This Article 
 Bibliographic References 
 Add to: 
BrainGazer - Visual Queries for Neurobiology Research
November/December 2009 (vol. 15 no. 6)
pp. 1497-1504
Stefan Bruckner, Institute of Computer Graphics and Algorithms, Vienna University of Technology, Austria
Veronika Šoltészová, Institute of Computer Graphics and Algorithms, Vienna University of Technology, Austria
Eduard Gröller, Institute of Computer Graphics and Algorithms, Vienna University of Technology, Austria
Jiří Hladůvka, VRVis Research Center, Vienna, Austria
Katja Bühler, VRVis Research Center, Vienna, Austria
Jai Y. Yu, Research Institute of Molecular Pathology, Vienna, Austria
Barry J. Dickson, Research Institute of Molecular Pathology, Vienna, Austria
Neurobiology investigates how anatomical and physiological relationships in the nervous system mediate behavior. Molecular genetic techniques, applied to species such as the common fruit fly Drosophila melanogaster, have proven to be an important tool in this research. Large databases of transgenic specimens are being built and need to be analyzed to establish models of neural information processing. In this paper we present an approach for the exploration and analysis of neural circuits based on such a database. We have designed and implemented \emph{BrainGazer}, a system which integrates visualization techniques for volume data acquired through confocal microscopy as well as annotated anatomical structures with an intuitive approach for accessing the available information. We focus on the ability to visually query the data based on semantic as well as spatial relationships. Additionally, we present visualization techniques for the concurrent depiction of neurobiological volume data and geometric objects which aim to reduce visual clutter. The described system is the result of an ongoing interdisciplinary collaboration between neurobiologists and visualization researchers.

[1] C. Ahlberg, C. Williamson, and B. Shneiderman, Dynamic queries for information exploration: An implementation and evaluation. In Proceedings of ACM CHI, pages 619–626, 1992.
[2] Amira.
[3] R. S. Avila, L. M. Sobierajski, and A. E. Kaufman, Visualizing nerve cells. IEEE Computer Graphics and Applications, 14 (5): 11–13, 1994.
[4] L. Bertrand and J. Nissanov The neuroterrain 3D mouse brain atlas. Frontiers in Neuroinformatics, 2, 2008.
[5] G. Bezgin, A. Reid, D. Schubert, and R. Kötter, Matching spatial with ontological brain regions using Java tools for visualization, database access, and integrated data analysis. Neuroinformatics, 7 (l): 7–22, 2009.
[6] J. Bjaalie Localization in the brain: New solutions emerging. Nature Reviews Neuroscience, 3: 322–325, 2002.
[7] A. H. Brand and N. Perrimon, Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118 (2): 401–415, 1993.
[8] S. Bruckner and M. E. Gröller Instant volume visualization using maximum intensity difference accumulation. Computer Graphics Forum, 28 (3): 775–782, 2009.
[9] G. A. Burns, W.-C. Cheng, R. H. Thompson, and L. W. Swanson The NeuARt II system: A viewing tool for neuroanatomical data based on published neuroanatomical atlases. BMC Bioinformatics, 7: 531–549, 2006.
[10] W. Cai, and G. Sakas, Data intermixing and multi-volume rendering. Computer Graphics Forum, 18 (3): 359–368, 1999.
[11] M. Chicurel Databasing the brain. Nature, 406: 822–825, 2000.
[12] P. de Heras Ciechomski, R. Mange, and A. Peternier Two-phased real-time rendering of large neuron databases. In Proceedings of International Conference on Innovations in Information Technology 2008, pages 712–716, 2008.
[13] W. de Leeuw, P. J. Verschure, and R. van Liere, Visualization and analysis of large data collections: A case study applied to confocal microscopy data. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 1251–1258, 2006.
[14] M. Derthick, J. Kolojejchick, and S. F. Roth An interactive visual query environment for exploring data. In Proceedings of ACM VIST, pages 189–198, 1997.
[15] B. J. Dickson Wired for sex: the neurobiology of drosophila mating decisions. Science, 322 (5903): 904–909, 2008.
[16] Flybrain.
[17] J. Fredriksson Design of an internet accessible visual human brain database system. In, Proceedings of IEEE International Conference on Multimedia Computing and Systems, volume 1,pages 469–474, 1999.
[18] V Gaede and O. Günther Multidimensional access methods. ACM Computing Surveys, 30 (2): 170–231, 1998.
[19] W. Gilbert A cube-filling hilbert curve. The Mathematical Intelligencer, 6 (3): 78, 1984.
[20] H. Hauser, L. Mroz, G.-I. Bischi, and M. E. Gröller Two-level volume rendering. , IEEE Transactions on Visualization and Computer Graphics, 7 (3): 242–252, 2001.
[21] H. V Jagadish Linear clustering of objects with multiple attributes. ACM SIGMOD, 19 (2): 332–342, 1990.
[22] A. Jenett, J. E. Schindelin, and M. Heisenberg, The virtual insect brain protocol: Creating and comparing standardized neuroanatomy. BMC Bioinformatics, 7 (1): 544–555, 2006.
[23] A. E. Kaufman, R. Yagel, R. Bakalash, and I. Spector Volume visualization in cell biology. In Proceedings of' IEEE Visualization, pages 160–167, 1990.
[24] D. Keim, Information visualization and visual data mining. IEEE Transactions on Visualization and Computer Graphics, 7 (l): 100–107, 2002.
[25] J. Kniss, S. Premoze, M. Ikits, A. Lefohn, C. Hansen, and E. Praun Gaussian transfer functions for multi-field volume visualization. In Proceedings of IEEE Visualization, pages 497–504, 2003.
[26] S. H. Koslow, and S. Subramaniam editors. Databasing the Brain: From Data to Knowledge (Neuroinformatics). Wiley, 2002.
[27] A. Kuß, S. Prohaska, B. Meyer, J. Rybak, and H.-C. Hege Ontology-based visualization of hierarchical neuroanatomical structures. In Proceedings of Visual Computing for Biomedicine, pages 177–184, 2008.
[28] C. Lau, L. Ng, C. Thompson, S. Pathak, L. Kuan, A. Jones, and M. Hawrylycz, Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain. BMC Bioinformatics, 9 (1): 153–163, 2008.
[29] T. Luft, C. Colditz, and O. Deussen Image enhancement by unsharp masking the depth buffer. ACM Transactions on Graphics, 25 (3): 1206–1213, 2006.
[30] R. Maciejewski, S. Rudolph, R. Hafen, A. Abusalah, M. Yakout, M. Ouzzani, W., Cleveland, S. Grannis, M. Wade, and D. Ebert, Understanding syndromic hotspots – a visual analytics approach. In Proceedings of IEEE Symposium on Visual Analytics Science and Technology, pages 35–12, 2008.
[31] A. Martin and M. Ward High dimensional brushing for interactive exploration of multivariate data. In Proceedings of IEEE Visualization, pages 271–278, 1995.
[32] N. L. Max Computer rendering of lobster neurons. In Proceedings of ACM SIGGRAPH, pages 241–245, 1976.
[33] A. Maye, T. H. Wenckebach, and H.-C. Hege, Visualization, reconstruction and integration of neuronal structures in digital brain atlases. International Journal of Neuroscience, 116 (4): 431–459, 2006.
[34] Z. Melek, D. Mayerich, C. Yuksel, and J. Keyser, Visualization of fibrous and threadlike data. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 1165–1172, 2006.
[35] S. Oeltze and B. Preim, Visualization of vasculature with convolution surfaces: method, validation and evaluation. IEEE Transactions on Medical Imaging, 24 (4): 540–548, 2005.
[36] S. R. Olsen and R. I. Wilson, Cracking neural circuits in a tiny brain: new approaches for understanding the neural circuitry of drosophila. Trends in Neuro-sciences, 31 (10): 512–520, 2008.
[37] W. Pereanu and V Hartenstein, Neural lineages of the drosophila brain: A three-dimensional digital atlas of the pattern of lineage location and projection at the late larval stage. The Journal of Neuroscience, 26 (20): 5534–5553, 2006.
[38] W. A. Press, B. A. Olshausen, and D. C. V Essen A graphical anatomical database of neural connectivity. Philosophical Transactions of the Royal Society, 356: 1147–1157, 2001.
[39] T. Rohlfing, and J. C. R. Maurer, Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees. IEEE Transactions on Information Technology in Biomedicine, 7 (l): 16–25, 2003.
[40] G. Sakas, M. G. Vicker, and P. J. Plath Visualization of laser confocal microscopy datasets. In Proceedings of IEEE Visualization, pages 375–379, 1996.
[41] S. Schmitt, J. F. Evers, C. Duch, M. Scholz, and K. Obermayer New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks. Neurolmage, 23 (4): 1283–1298, 2004.
[42] A. Sherbondy, D. Akers, R. Mackenzie, R. Dougherty, and B. Wandell Exploring connectivity of the brain's white matter with dynamic queries. , IEEE Transactions on Visualization and Computer Graphics, ll (4): 419–430, 2005.
[43] M. Straka, M. Cervenansky, A. L. Cruz, A. Köchl, M. Šrámek, M. E. Gröller, and D. Fleischmann The VesselGlyph: Focus & context visualization in CT-angiography. In Proceedings of IEEE Visualization, pages 385–392, 2004.

Index Terms:
biomedical visualization, neurobiology, visual queries, volume visualization
Stefan Bruckner, Veronika Šoltészová, Eduard Gröller, Jiří Hladůvka, Katja Bühler, Jai Y. Yu, Barry J. Dickson, "BrainGazer - Visual Queries for Neurobiology Research," IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp. 1497-1504, Nov.-Dec. 2009, doi:10.1109/TVCG.2009.121
Usage of this product signifies your acceptance of the Terms of Use.