This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Coloring 3D Line Fields Using Boy’s Real Projective Plane Immersion
November/December 2009 (vol. 15 no. 6)
pp. 1457-1464
Çağatay Demiralp, Brown University
John F. Hughes, Brown University
David H. Laidlaw, Brown University
We introduce a new method for coloring 3D line fields and show results from its application in visualizing orientation in DTI brain data sets. The method uses Boy’s surface, an immersion of RP2 in 3D. This coloring method is smooth and one-to-one except on a set of measure zero, the double curve of Boy’s surface.

[1] B. Alpern, L. Carter, M. Grayson, and C. Pelkie, Orientation maps: techniques for visualizing rotations (a consumer's guide). In VIS '93: Proceedings of the 4th conference on Visualization '93, pages 183–188, 1993.
[2] F. Apery, Models of the Real Projective Plane. Friedrich Vieweg & Sohn Verlag, 1987.
[3] P. J. Basser, J. Mattiello, and D. LeBihan, Estimation of the effective self-diffusion tensor from the nmr spin echo. J Magn Reson B, 103 (3): 247–254, March 1994.
[4] W. Boy, Über die Curvatura Integra und dieTopologie der Geschlossener Flachen. PhD thesis, Universität Göttingen, Göttingen, 1901.
[5] R. L. Bryant, Surfaces in conformal geometry. In The mathematical heritage of Hermann Weyl (Durham, NC, 1987), volume 48 of Proc. Sympos. Pure Math., pages 227–240. Amer. Math. Soc., Providence, RI, 1988.
[6] W. E. Byerly, An Elementary Treatise on Fourier's Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. Dover, New York, 1959.
[7] G. K. Francis, A Topological Picture Book. Springer, 2006.
[8] R. Kusner, Conformal geometry and complete minimal surfaces. Bull. Amer. Math. Soc. (N.S.), 17 (2): 291–295, 1987.
[9] W. S. Massey, Algebraic Topology: An Introduction. Number 56 in Graduate Texts in Mathematics. Springer-Verlag, New York, NY, 1967.
[10] V. Mineev, Topological objects in nematic liquid crystals. In Intuitive Combinatorial Topology. Springer, July 2001.
[11] S. Mori and J. Zhang, Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron, 51: 527–539, 2006.
[12] B. Morin, Équations du retournement de la sphère. C. R. Acad Sci. Paris Sér. A-B, 287 (13): A879–A882, 1978.
[13] S. Pajevic and C. Pierpaoli, Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain. MRM, 42: 526–540, 1999.
[14] C. Pierpaoli, Oh no! one more method for color mapping of fiber tract direction using diffusion mr imaging data. In Proceedings of 5th ISMRM, page 1741, 1997.
[15] http://www.cs.brown.edu/~cad/rp2coloring .
[16] B. Yamrom, J. A. Sutliff, and A. P. Woodfield, Visualizing polycrystalline orientation microstructures with spherical color maps. In VIS '94: Proceedings of the conference on Visualization '94, pages 46–51, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

Index Terms:
Line field, colormapping, orientation, real projective plane, tensor field, DTI.
Citation:
Çağatay Demiralp, John F. Hughes, David H. Laidlaw, "Coloring 3D Line Fields Using Boy’s Real Projective Plane Immersion," IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp. 1457-1464, Nov.-Dec. 2009, doi:10.1109/TVCG.2009.125
Usage of this product signifies your acceptance of the Terms of Use.