The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.06 - November/December (2009 vol.15)
pp: 1441-1448
Ralph Brecheisen , Technical University Eindhoven
Anna Vilanova , Technical University Eindhoven
Bram Platel , Technical University Eindhoven
Bart ter Haar Romeny , Technical University Eindhoven
ABSTRACT
Fiber tracking of Diffusion Tensor Imaging (DTI) data offers a unique insight into the three-dimensional organisation of white matter structures in the living brain. However, fiber tracking algorithms require a number of user-defined input parameters that strongly affect the output results. Usually the fiber tracking parameters are set once and are then re-used for several patient datasets. However, the stability of the chosen parameters is not evaluated and a small change in the parameter values can give very different results. The user remains completely unaware of such effects. Furthermore, it is difficult to reproduce output results between differentusers. We propose a visualization tool that allows the user to visually explore how small variations in parameter values affect the output of fiber tracking. With this knowledge the user cannot only assess the stability of commonly used parameter values but also evaluate in a more reliable way the output results between different patients. Existing tools do not provide such information. A small user evaluation of our tool has been done to show the potential of the technique.
INDEX TERMS
Fiber Tracking, Parameter Sensitivity, Stopping Criteria, Diffusion Tensor Imaging, Uncertainty Visualization
CITATION
Ralph Brecheisen, Anna Vilanova, Bram Platel, Bart ter Haar Romeny, "Parameter Sensitivity Visualization for DTI Fiber Tracking", IEEE Transactions on Visualization & Computer Graphics, vol.15, no. 6, pp. 1441-1448, November/December 2009, doi:10.1109/TVCG.2009.170
REFERENCES
[1] D. Akers, A. Sherbondy, R. Mackenzie, R. Dougherty, and B. Wandell, Exploration of the Brain's White Matter Pathways with Dynamic Queries. In Proceedings of IEEE Visualization '04, pages 377–384, 2005.
[2] P. Basser, J. Mattiello, and D. LeBihan, Estimation of the Effective Self-Diffusion Tensor From the NMR Spin Echo. Journal of Magnetic Resonance, 103: 247–254, 1994.
[3] P. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, In Vivo Fiber Tractography using DT-MRI Data. Magnetic Resonance in Medicine, 44: 625–632, 2000.
[4] C. Beaulieu, The Basis of Anisotropic Water Diffusion in the Nervous System. NMR in Biomedicine, 15: 435–455, 2002.
[5] J. Blaas, C. Botha, B. Peters, F. Vos, and F. Post, Fast and Reproducible Fiber Bundle Selection in DTI Visualization. In Proceedings of IEEE Visualization '05, pages 59–64, 2005.
[6] R. Botchen, D. Weiskopf, and T. Ertl, Texture-Based Visualization of Uncertainty in Flow Fields. In Proceedings of IEEE Visualization '05, pages 647–654, 2005.
[7] O. Ciccarelli, G. Parker, A. Toosy, C. Wheeler-Kingshott, G. Barker, P. Boulby, D. Miller, and A. Thompson, From Diffusion Tractography to Quantitative White Matter Tract Measures - A Reproducibility Study. NeuroImage, 18: 348–359, 2003.
[8] T. Conturo, N. Lori, T. Cull, E. Akbudak, A. Snyder, J. Shimony, R. McKinstry, H. Burton, and M. Raichie, Tracking Neuronal Fiber Pathways in the Living Human Brain. In Proceedings of National Academy of Sciences (PNAS '99), pages 10422–10427, 1999.
[9] S. Correia, S. Lee, T. Voorn, D. Tate, R. Paul, S. Zhang, S. Salloway, P. Malloy, and D. Laidlaw, Quantitative Tractography Metrics of White Matter Integrity in Diffusion-Tensor MRI. NeuroImage, 42: 568–581, 2008.
[10] H. Doleish, M. Gasser, and H. Hauser, Interactive Feature Specification for Focus+Context Visualization of Complex Simulation Data. In Proceedings of Symposium on Data Visualization '03, pages 239–248, 2003.
[11] J. Eyton, Complementary-Color Two-Variable Maps. Annals of the Association of American Geographers, 74: 477–490, 1984.
[12] G. Grigoryan and P. Rheingans, Point-Based Probabilistic Surfaces to Show Surface Uncertainty. IEEE Transactions on Visualization and Computer Graphics, 10: 564–573, 2004.
[13] M. Hadwiger, L. Fritz, C. Rezk-Salama, T. Hoellt, G. Geier, and T. Pabel, Interactive Volume Exploration for Feature Detection and Quantification in Industrial CT Data. In Proceedings of IEEE Visualization '08, pages 1507–1514, 2008.
[14] D. Jones, Determining and Visualizing Uncertainty in Estimates of Fiber Orientation from Diffusion Tensor MRI. In Proceedings of International Society for Magnetic Resonance Medicine (ISMRM '02), volume 49, pages 7–12, 2003.
[15] D. Jones and C. Pierpaoli, Confidence Mapping in Diffusion Tensor Magnetic Resonance Imaging. In Proceedings of International Society for Magnetic Resonance Medicine (ISMRM '05), volume 53, pages 1143– 1149, 2005.
[16] M. Lazar and A. Alexander, An Error Analysis of White Matter Tractography Methods - Synthetic Diffusion Tensor Field Simulations. NeuroImage, 20: 1140–1153, 2003.
[17] S. Lodha, A. Pang, R. Sheehan, and C. Wittenbrink, UFLOW: Visualizing Uncertainty in Fluid Flow. In Proceedings of IEEE Visualization '96, pages 249–254, 1996.
[18] C. Lundstroem, P. Ljung, A. Persson, and A. Ynnerman, Uncertainty Visualization in Medical Volume Rendering Using Probabilistic Animation. IEEE Transactions on Visualization and Computer Graphics, 13: 1648– 1655, 2007.
[19] B. Moberts, A. Vilanova, and J. v. Wijk, Evaluation of Fiber Clustering Methods for Diffusion Tensor Imaging. In Proceedings of IEEE Visualization '05, pages 65–72, 2005.
[20] S. Mori, B. Crain, V. Chacko, and P. v. Zijl, Three Dimensional Tracking of Axonal Projections in the Brain by Magnetic Resonance Imaging. Annals of Neurology, 45: 265–269, 1999.
[21] S. Mori and P. v. Zijl, Fiber Tracking - Principles and Strategies. NMR in Biomedicine, 15: 468–480, 2002.
[22] A. Pang, C. Wittenbrink, and S. Lodha, Approaches to Uncertainty Visualization. The Visual Computer, 13: 370–390, 1997.
[23] C. Pierpaoli and P. Basser, Toward a Quantitative Assessment of Diffusion Anisotropy. Magnetic Resonance in Medicine, 36: 893–906, 1996.
[24] P. Rheingans, Task-Based Color Scale Design. In Proceedings of Applied Image and Pattern Recognition (SPIE '99), pages 35–43, 1999.
[25] S. Silva, J. Madeira, and B. Santos, There is More to Color Scales Than Meets the Eye - A Review on the Use of Color in Visualization. In Proceedings of Information Visualization '07, pages 943–950, 2007.
[26] T. Taoka, M. Morikawa, T. Akashi, T. Miyasaka, H. Nakagawa, K. Kiuchi, T. Kishimoto, and K. Kichikawa, Fractional anisotropy - threshold dependence in tract-based diffusion tensor analysis: Evaluation of the uncinate fasciculus in alzheimer disease. American Journal of Neuroradiology, 2009.
[27] A. Vilanova, S. Zhang, G. Kindlmann, and D. Laidlaw, Visualization and Image Processing of Tensor Fields, chapter An Introduction to Visualization of Diffusion Tensor Imaging and Its Applications, pages 121–153. Mathematics and Visualization. Springer Verlag, 2004.
[28] S. Wakana, A. Caprihan, M. Panzenboeck, J. Fallon, M. Perry, R. Gollub, K. Hua, J. Zhang, H. Jiang, and P. Dubey, Reproducibility of Quantitative Tractography Methods Applied to Cerebral White Matter. NeuroImage, 36: 630–644, 2007.
[29] X. Wei, A. Kaufman, and T. Hallman, Case Study: Visualization of Particle Track Data. In Proceedings of IEEE Visualization '01, pages 465–468, 2001.
[30] F. Weiler, H. Hahn, A. Koehn, O. Friman, J. Klein, and H.-O. Peitgen, Dealing with Inaccuracies in Multimodal Neurosurgical Planning - A Preliminary Concept. In Proceedings of the 22nd Internal Congress and Exhibition of Computer Assisted Radiology and Surgery (CARS) 2008, 2008.
[31] D. Weinstein, G. Kindlmann, and E. Lundberg, Tensorlines - Advection-Diffusion Based Propagation Through Diffusion Tensor Fields. In Proceedings of IEEE Visualization '99, pages 249–254, 1999.
[32] A. Wenger, D. Keefe, S. Zhang, and D. Laidlaw, Interactive Volume Rendering of Thin Thread Structures within Multivalued Scientific Data Sets. IEEE Transactions on Visualization and Computer Graphics, 10: 664– 672, 2004.
[33] C. Wittenbrink, A. Pang, and S. Lodha, Glyphs for Visualizing Uncertainty in Vector Fields. IEEE Transactions on Visualization and Computer Graphics, 2: 266–279, 1996.
6 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool