The Community for Technology Leaders
RSS Icon
Issue No.06 - November/December (2009 vol.15)
pp: 1407-1414
Philipp Muigg , Vienna University of Technology and SimVis GmbH, Austria
Thomas Hildebrandt , Asklepios Clinic Birkenwerder
Helmut Doleisch , SimVis GmbH, Austria
Hans-Christian Hege , Zuse Institute Berlin (ZIB)
Rhinologists are often faced with the challenge of assessing nasal breathing from a functional point of view to derive effective therapeutic interventions. While the complex nasal anatomy can be revealed by visual inspection and medical imaging, only vague information is available regarding the nasal airflow itself: Rhinomanometry delivers rather unspecific integral information on the pressure gradient as well as on total flow and nasal flow resistance. In this article we demonstrate how the understanding of physiological nasal breathing can be improved by simulating and visually analyzing nasal airflow, based on an anatomically correct model of the upper human respiratory tract. In particular we demonstrate how various Information Visualization (InfoVis) techniques, such as a highly scalable implementation of parallel coordinates, time series visualizations, as well as unstructured grid multi-volume rendering, all integrated within a multiple linked views framework, can be utilized to gain a deeper understanding of nasal breathing. Evaluation is accomplished by visual exploration of spatio-temporal airflow characteristics that include not only information on flow features but also on accompanying quantities such as temperature and humidity. To our knowledge, this is the first in-depth visual exploration of the physiological function of the nose over several simulated breathing cycles under consideration of a complete model of the nasal airways, realistic boundary conditions, and all physically relevant time-varying quantities.
Flow visualization, exploratory data analysis, interactive visualFlow visualization, exploratory data analysis, interactive visual analysis of scientific data, time-dependent data.
Philipp Muigg, Thomas Hildebrandt, Helmut Doleisch, Hans-Christian Hege, "Visual Exploration of Nasal Airflow", IEEE Transactions on Visualization & Computer Graphics, vol.15, no. 6, pp. 1407-1414, November/December 2009, doi:10.1109/TVCG.2009.198
[1] H. Akiba and K.-L. Ma, A tri-space visualization interface for analyzing time-varying multivariate volume data. In Proc. of EuroVis07 pages 115–122, 2007.
[2] N. Bailie, H. Brendan, J. Watterson, and G. Gallagher, An overview of numerical modeling of nasal airflow. Rhinology, 44: 53–57, 2006.
[3] L. Bavoil, S. P. Callahan, C. E. Scheidegger, H. T. Vo, P. Crossno, C. T. Silva, and J. Freire, Vistrails: Enabling interactive multiple-view visualizations. In Proc. of IEEE Visualization pages 745–747. IEEE Computer Society, 2005.
[4] B. Cabral and L. C. Leedom, Imaging vector fields using line integral convolution. In Proceedings of SIGGRAPH 93 pages 263–272, 1993.
[5] H. Doleisch, SIMVIS: interactive visual analysis of large and time-dependent 3D simulation data. In Proc. of Winter Simulation Conference pages 712–720, 2007.
[6] H. Doleisch, M. Gasser, and H. Hauser, Interactive feature specification for focus+context visualization of complex simulation data. In VISSYM '03 pages 239–248, 2003.
[7] H. Doleisch and H. Hauser, Smooth brushing for focus+context visualization of simulation data in 3D. In Proc. of WSCG 2002 pages 147–154, 2002.
[8] H. Doleisch, M. Mayer, M. Gasser, P. Priesching, and H. Hauser, Interactive feature specification for simulation data on time-varying grids. In Proc. of SimVis 2005 pages 291–304, 2005.
[9] H. Doleisch, P. Muigg, and H. Hauser, Interactive visual analysis of hurricane Isabel with SimVis. Technical Report TR-VRVis-2004-058, VRVis Research Center, Vienna Austria, 2004.
[10] D. Doorly, D. J. Taylor, P. Franke, and R. C. Schroter, Experimental investigation of nasal airflow. Proc. IMechE 2008, Part H, J. Engineering in Medicine, 222: 439–453, 2008.
[11] D. J. Doorly, D. J. Taylor, A. M. Gambaruto, R. C. Schroter, and N. Tolley, Nasal architecture: form and flow. Phil. Trans. R. Soc. A, 366: 3225–3246, 2008.
[12] G. P. Galdi, R. Rannacher, A. M. Robertson, and S. Turek, Hemodynamical Flows: Modeling, Analysis and Simulation (Oberwolfach Seminars). Birkhuser, 1. edition, 2007.
[13] G. J. M. Garcia, N. Bailie, D. A. Martins, and J. S. Kimbell, Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity. J Appl Physiol, 103: 1082–1092, 2007.
[14] M. P. Garrity, Raytracing irregular volume data. ACM Computer Graphics, 24 (5): 35–40, 1990.
[15] D. L. Gresh, B. E. Rogowitz, R. L. Winslow, D. F. Scollan, and C. K. Yung, Weave: a system for visually linking 3-D and statistical visualizations, applied to cardiac simulation and measurement data. In Proc. of IEEE Visualization '00 pages 489–492, 2000.
[16] H. Grotjans and F. R. Menter, Wall functions for industrial applications pages 1112–1117. John Wiley & Sons, 1998.
[17] A. Inselberg and B. Dimsdale, Parallel coordinates: a tool for visualizing multidimensional geometry. In Proc. of IEEE Visualization '90 pages 361–378. IEEE Computer Society, 1990.
[18] S. Ishikawa, T. Nakayama, M. Watanabe, and T. Matsuzawa, Visualization of flow resistance in physiological nasal respiration - analysis of velocity and vorticities using numerical simulation. Arch Otolarygol Head Neck Surg, 132: 1203–1209, 2006.
[19] J. Jeong and F. Hussain, On the identification of a vortex. Journal of Fluid Mechanics Digital Archive, 285 (-1): 69–94, 1995.
[20] J. Kehrer, F. Ladstädter, P. Muigg, H. Doleisch, A. Steiner, and H. Hauser, Hypothesis generation in climate research with interactive visual data exploration. IEEE TVCG, 14 (6): 1579–1586, 2008.
[21] V. Kulish and M. Kanoh, Human Respiration: Anatomy And Physiology, Mathematical Modeling, Numerical Simulation And Applications (Advances in Bioengineering, No 3). WIT Press, 2006.
[22] R. S. Laramee, H. Hauser, H. Doleisch, F. H. Post, B. Vrolijk, and D. Weiskopf, The state of the art in flow visualization: Dense and texture-based techniques. Computer Graphics Forum, 23 (2): 203–221, 2004.
[23] J. Lindemann, H.-J. Brambs, T. Keck, K. Wiesmiller, G. Rettinger, and D. Pless, Numerical simulation of intranasal airflow after radical sinus surgery. American Journal of OtolaryngologyHead and Neck Medicine and Surgery, 26: 175–180, 2005.
[24] J. Lindemann, T. Keck, K. Wiesmiller, B. Sander, H.-J. Brambs, G. Rettinger, and D. Pless, Nasal air temperature and airflow during respiration in numerical simulation based on multislice computed tomography scan. Am J Rhinol, 20: 219–223, 2006.
[25] G. Mlynski, Physiology and Pathophysiology of Nasal Breathing pages 75–87. Thieme, 2004.
[26] P. Muigg, M. Hadwiger, H. Doleisch, and H. Hauser, Scalable hybrid unstructured and structured grid raycasting. IEEE TVCG, 13 (6): 1592–1599, 2007.
[27] P. Muigg, J. Kehrer, S. Oeltze, H. Piringer, H. Doleisch, B. Preim, and H. Hauser, A four-level focus+context approach to interactive visual analysis of temporal features in large scientific data. Computer Graphics Forum, 27 (3): 775–782, 2008.
[28] M. Novotny and H. Hauser, Outlier-preserving focus+context visualization in parallel coordinates. IEEE TVCG, 12 (5): 893–900, 2006.
[29] D. Pless, T. Keck, K. Wiesmiller, G. Rettinger, A. J. Aschoff, T. R. Fleiter, and J. Lindemann, Numerical simulation of air temperature and airflow patterns in the human nose during expiration. Clin. Otolaryngol., 29: 642–647, 2004.
[30] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch, The state of the art in flow visualization: Feature extraction and tracking. In Computer Graphics Forum, volume 22 (4), pages 775–792. 2003.
[31] I. A. Sadarjoen, T. van Walsum, A. J. S. Hin, and F. H. Post, Particle tracing algorithms for 3D curvilinear grids. In Scientific Visualization: Overviews, Methodologies, and Techniques pages 311–335. IEEE Computer Society, 1997.
[32] T. Shakked, D. Katoshevski, D. M. Broday, and I. Amirav, Administration of aerosolized drugs to infants by a hood. Journ. of Aerosol Medicine, 19 (4): 533–542, 2006.
[33] B. Shneiderman, The eyes have it: A task by data type taxonomy for information visualizations. In Proc. of IEEE VL pages 336–343, 1996.
[34] D. Stalling, M. Westerhoff, and H.-C. Hege, Amira: A highly interactive system for visual data analysis. In C. D. Hansen and C. R. Johnson, editors, The Visualization Handbook pages 749–767. Elsevier, 2005.
[35] D. Stalling, M. Zöckler, and H.-C. Hege, Fast display of illuminated field lines. IEEE TVCG, 3 (2): 118–128, 1997.
[36] A. Steinmann, P. Bartsch, S. Zachow, and T. Hildebrandt, Breathing easily: Simulation of airflow in human noses can become a useful rhinosurgery planning tool. ANSYS Advantage, 2 (1): 30–31, 2008.
[37] M. Weiler, M. Kraus, M. Merz, and T. Ertl, Hardware-based ray casting for tetrahedral meshes. In Proc. of IEEE Visualization 2003 pages 333–340, 2003.
[38] D. C. Wilcox, Turbulence Modelling for CFD. DCW Industries, Inc., La Canada, CA, USA, 2nd edition, 1998.
[39] S. Yu, Y. Liu, X. Sun, and S. Li, Influence of nasal structure on the distribution of airflow in nasal cavity. Rhinology, 46: 137–143, 2008.
[40] S. Zachow, A. Steinmann, T. Hildebrandt, and W. Heppt, Understanding nasal airflow via CFD simulation and visualization. In Proc. Comp Aid Surg Around the Head pages 173–176. Pro Business Verlag, 2007.
[41] S. Zachow, A. Steinmann, T. Hildebrandt, R. Weber, and W. Heppt, CFD simulation of nasal airflow: treatment planning for functional rhinosurgery. In Computer Assisted Radiology and Surgery pages 165–167, Osaka, Japan, 2006. Elsevier.
[42] S. Zachow, M. Zilske, and H.-C. Hege, 3D reconstruction of individual anatomy from medical image data: Segmentation and geometry processing. In 25. ANSYS Conference & CADFEM Users' Meeting, Dresden, 2007. and Techn. Report: ZR 07-41, Zuse Institute Berlin, 2007.
[43] K. Zhao, P. Dalton, G. C. Yang, and P. W. Scherer, Numerical modeling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose. Chem. Senses, 31: 107–118, 2006.
[44] M. Zilske, H. Lamecker, and S. Zachow, Adaptive remeshing of non-manifold surfaces. Computer Graphics Forum, 27 (2): 211–214, 2008.
83 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool