The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.06 - November/December (2009 vol.15)
pp: 1399-1406
Christian Dick , Technische Universität München
Joachim Georgii , Technische Universität München
Rainer Burgkart , Technische Universität München
Rüdiger Westermann , Technische Universität München
ABSTRACT
We demonstrate the application of advanced 3D visualization techniques to determine the optimal implant design and position in hip joint replacement planning. Our methods take as input the physiological stress distribution inside a patient's bone under load and the stress distribution inside this bone under the same load after a simulated replacement surgery. The visualization aims at showing principal stress directions and magnitudes, as well as differences in both distributions. By visualizing changes of normal and shear stresses with respect to the principal stress directions of the physiological state, a comparative analysis of the physiological stress distribution and the stress distribution with implant is provided, and the implant parameters that most closely replicate the physiological stress state in order to avoid stress shielding can be determined. Our method combines volume rendering for the visualization of stress magnitudes with the tracing of short line segments for the visualization of stress directions. To improve depth perception, transparent, shaded, and antialiased lines are rendered in correct visibility order, and they are attenuated by the volume rendering. We use a focus+context approach to visually guide the user to relevant regions in the data, and to support a detailed stress analysis in these regions while preserving spatial context information. Since all of our techniques have been realized on the GPU, they can immediately react to changes in the simulated stress tensor field and thus provide an effective means for optimal implant selection and positioning in a computational steering environment.
INDEX TERMS
Stress Tensor Fields, Biomedical Visualization, Comparative Visualization, Implant Planning, GPU Techniques
CITATION
Christian Dick, Joachim Georgii, Rainer Burgkart, Rüdiger Westermann, "Stress Tensor Field Visualization for Implant Planning in Orthopedics", IEEE Transactions on Visualization & Computer Graphics, vol.15, no. 6, pp. 1399-1406, November/December 2009, doi:10.1109/TVCG.2009.184
REFERENCES
[1] L.-P. Amiot and F. Poulin, Computed tomography-based navigation for hip, knee, and spine surgery. Clinical Orthopaedics and Related Research, 421: 77–86, 2004.
[2] K.-J. Bathe, Finite Element Procedures. Prentice Hall, 2002.
[3] B.-A. Behrens, C. J. Wirth, H. Windhagen, I. Nolte, A. Meyer-Lindenberg, and A. Bouguecha, Numerical investigations of stress shielding in total hip prostheses. Journal of Engineering in Medicine, 222 (5): 593–600, 2008.
[4] M. Bessho, I. Ohnishi, J. Matsuyama, T. Matsumoto, K. Imai, and K. Nakamura, Prediction of strength and strain of the proximal femur by a CT-based finite element method. Journal of Biomechanics, 40 (8): 1745–1753, 2007.
[5] A. Bhalerao and C.-F. Westin, Tensor splats: Visualising tensor fields by texture mapped volume rendering. In Proc. MICCAI, pages 294–302, 2003.
[6] E. Boring and A. Pang, Interactive deformations from tensor fields. In Proc. IEEE Visualization, pages 297–304, 1998.
[7] E. Chan and F. Durand, GPU Gems, volume 2, chapter Fast Prefiltered Lines. Addison-Wesley, 2005.
[8] M. J. da Silva, S. Zhang, Ç. Demiralp, and D. H. Laidlaw, Visualizing diffusion tensor volume differences. In Proc. IEEE Visualization, Work in Progress, pages 16–17, 2001.
[9] T. Delmarcelle and L. Hesselink, Visualizing second-order tensor fields with hyperstreamlines. IEEE Computer Graphics and Applications, 13 (4): 25–33, 1993.
[10] T. Delmarcelle and L. Hesselink, The topology of symmetric, second-order tensor fields. In Proc. IEEE Visualization, pages 140–147, 1994.
[11] C. Dick, J. Georgii, R. Burgkart, and R. Westermann, Computational steering for patient-specific implant planning in orthopedics. In Proc. Eurographics Workshop on Visual Computing for Biomedicine, pages 83–92, 2008.
[12] J. Georgii and R. Westermann, A multigrid framework for real-time simulation of deformable bodies. Computer & Graphics, 30 (3): 408–415, 2006.
[13] H. Handels, J. Ehrhardt, W. Plötz, and S. J. Pöppl, Simulation of hip operations and design of custom-made endoprostheses using virtual reality techniques. Methods of Information in Medicine, 40 (2): 74–77, 2001.
[14] K. M. Hasan, P. J. Basser, D. L. Parker, and A. L. Alexander, Analytical computation of the eigenvalues and eigenvectors in DT-MRI. Journal of Magnetic Resonance, 152 (1): 41–47, 2001.
[15] L. Hesselink, Y. Levy, and Y. Lavin, The topology of symmetric, second-order 3D tensor fields. IEEE TVCG, 3 (1): 1–11, 1997.
[16] I. Hotz, L. Feng, H. Hagen, B. Hamann, K. Joy, and B. Jeremic, Physically based methods for tensor field visualization. In Proc. IEEE Visualization, pages 123–130, 2004.
[17] K. Kawate, Y. Ohneda, T. Ohmura, H. Yajima, K. Sugimoto, and Y. Takakura, Computed tomography-based custom-made stem for dys-plastic hips in japanese patients. Journal of Arthroplasty, 24 (1): 65–70, 2009.
[18] G. Kindlmann, Superquadric tensor glyphs. In Proc. Joint Eurographics - IEEE TCVG Symposium on Visualization, pages 147–154, 2004.
[19] G. Kindlmann, D. Weinstein, and D. Hart, Strategies for direct volume rendering of diffusion tensor fields. IEEE TVCG, 6 (2): 124–138, 2000.
[20] P. Kondratieva, J. Krüger, and R. Westermann, The application of GPU particle tracing to diffusion tensor field visualization. In Proc. IEEE Visualization, pages 73–78, 2005.
[21] J. Krüger, P. Kipfer, P. Kondratieva, and R. Westermann, A particle system for interactive visualization of 3D flows. IEEE TVCG, 11 (6): 744–756, 2005.
[22] J. Krüger, J. Schneider, and R. Westermann, ClearView: An interactive context preserving hotspot visualization technique. IEEE TVCG, 12 (5): 941–948, 2006.
[23] B. Kummer, Biomechanik: Form und Funktion des Bewegungsapparates. Deutscher Ärzte-Verlag, 2005.
[24] D. H. Laidlaw, E. T. Ahrens, D. Kremers, M. J. Avalos, R. E. Jacobs, and C. Readhead, Visualizing diffusion tensor images of the mouse spinal cord. In Proc. IEEE Visualization, pages 127–134, 1998.
[25] D. Merhof, M. Sonntag, F. Enders, C. Nimsky, P. Hastreiter, and G. Greiner, Hybrid visualization for white matter tracts using triangle strips and point sprites. IEEE TVCG, 12 (5): 1181–1188, 2006.
[26] K. Myers and L. Bavoil, Stencil routed A-buffer In Proc. ACM SIGGRAPH Technical Sketch Program, page 21, 2007.
[27] I. Oh and W. H. Harris, Proximal strain distribution in the loaded femur. Journal of Bone and Joint Surgery, American Volume, 60 (1): 75–85, 1978.
[28] F. Pauwels, Atlas zur Biomechanik der gesunden und kranken Hüfte. Springer, 1973.
[29] V. Petrovic, J. Fallon, and F. Kuester, Visualizing whole-brain DTI tractography with GPU-based tuboids and LoD management. IEEE TVCG, 13 (6): 1488–1495, 2007.
[30] G. Reina, K. Bidmon, F. Enders, P. Hastreiter, and T. Ertl, GPU-based hyperstreamlines for diffusion tensor imaging. In Proc. Eurographics/IEEEVGTC Symposium on Visualization, pages 35–42, 2006.
[31] T. Renkawitz, F. S. Santori, J. Grifka, C. Valverde, M. M. Morlock, and I. D. Learmonth, A new short uncemented, proximally fixed anatomic femoral implant with a prominent lateral flare: design rationals and study design of an international clinical trial. BMC Musculoskeletal Disorders, 9: 147, 2008.
[32] A. Sigfridsson, T. Ebbers, E. Heiberg, and L. Wigström, Tensor field visualisation using adaptive filtering of noise fields combined with glyph rendering. In Proc. IEEE Visualization, pages 371–378, 2002.
[33] J. A. Simôes and M. A. Vaz, The influence on strain shielding of material stiffness of press-fit femoral components. Journal of Engineering in Medicine, 216 (5): 341–346, 2002.
[34] M. Starker, P. Thümler, A. Weipert, and S. Hanusek, Computer-assisted prosthesis selection and implantation control. Orthopäde, 29 (7): 627–635, 2000.
[35] F. Taddei, E. Schileo, B. Helgason, L. Cristofolini, and M. Viceconti, The material mapping strategy influences the accuracy of CT-based finite element models of bones: An evaluation against experimental measurements. Medical Engineering and Physics, 29 (9): 973–979, 2007.
[36] M. Viceconti, A. Chiarini, D. Testi, F. Taddei, B. Bordini, F. Traina, and A. Toni, New aspects and approaches in pre-operative planning of hip reconstruction: a computer simulation. Langenbeck's Archives of Surgery, 389 (5): 400–404, 2004.
[37] A. Wenger, D. F. Keefe, S. Zhang, and D. H. Laidlaw, Interactive volume rendering of thin thread structures within multivalued scientific data sets. IEEE TVCG, 10 (6): 664–672, 2004.
[38] C.-F. Westin, S. E. Maier, H. Mamata, A. Nabavi, F. A. Jolesz, and R. Kikinis, Processing and visualization for diffusion tensor MRI. Medical Image Analysis, 6 (2): 93–108, 2002.
[39] K.-H. Widmer and P. A. Grützner, Joint replacement—total hip replacement with CT-based navigation. Injury, 35 (1): S-A84–S-A89, 2004.
[40] A. Wilson and R. Brannon, Exploring 2D tensor fields using stress nets. In Proc. IEEE Visualization, pages 11–18, 2005.
[41] R. L. Wixson, Computer-assisted total hip navigation. Instructional Course Lectures, 57: 707–720, 2008.
[42] J. Wolff, Das Gesetz der Transformation der Knochen. Hirschwald, 1892.
[43] Z. Yosibash, R. Padan, L. Joskowicz, and C. Milgrom, A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. Journal of Biomechanical Engineering, 129 (3): 297–309, 2007.
[44] S. Zhang, Ç. Demiralp, and D. H. Laidlaw, Visualizing diffusion tensor MR images using streamtubes and streamsurfaces. IEEE TVCG, 9 (4): 454–462, 2003.
[45] X. Zheng and A. Pang, Volume deformation for tensor visualization. In Proc. IEEE Visualization, pages 379–386, 2002.
[46] X. Zheng and A. Pang, HyperLIC. In Proc. IEEE Visualization, pages 249–256, 2003.
[47] X. Zheng, B. N. Parlett, and A. Pang, Topological lines in 3D tensor fields and discriminant Hessian factorization. IEEE TVCG, 11 (4): 395–407, 2005.
[48] L. Zhukov and A. H. Barr, Oriented tensor reconstruction: Tracing neural pathways from diffusion tensor MRI. In Proc. IEEE Visualization, pages 387–394, 2002.
26 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool