This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Interactive Visualization of Molecular Surface Dynamics
November/December 2009 (vol. 15 no. 6)
pp. 1391-1398
Michael Krone, VISUS, Universität Stuttgart
Katrin Bidmon, VISUS, Universität Stuttgart
Thomas Ertl, VISUS, Universität Stuttgart
Molecular dynamics simulations of proteins play a growing role in various fields such as pharmaceutical, biochemical and medical research. Accordingly, the need for high quality visualization of these protein systems raises. Highly interactive visualization techniques are especially needed for the analysis of time-dependent molecular simulations. Beside various other molecular representations the surface representations are of high importance for these applications. So far, users had to accept a trade-off between rendering quality and performance—particularly when visualizing trajectories of time-dependent protein data. We present a new approach for visualizing the Solvent Excluded Surface of proteins using a GPU ray casting technique and thus achieving interactive frame rates even for long protein trajectories where conventional methods based on precomputation are not applicable. Furthermore, we propose a semantic simplification of the raw protein data to reduce the visual complexity of the surface and thereby accelerate the rendering without impeding perception of the protein’s basic shape. We also demonstrate the application of our Solvent Excluded Surface method to visualize the spatial probability density for the protein atoms over the whole period of the trajectory in one frame, providing a qualitative analysis of the protein flexibility.

[1] C. L. Bajaj, P. Djeu, V. Siddavanahalli, and A. Thane, TexMol: Interactive Visual Exploration of Large Flexible Multi-Component Molecular Complexes. In IEEE Visualization, pages 243–250, Oct 2004.
[2] L. Bavoil and M. Sainz, Screen Space Ambient Occlusion. NVIDIA Corporation, Aug 2008.
[3] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I. Shindyalov, and P. Bourne, The Protein Data Bank. Nucleic Acids Research, 28: 235–242, 2000.
[4] P. J. Bond, J. Holyoake, A. Ivetac, S. Khalid, and M. S. Sansom, Coarse-grained molecular dynamics simulations of membrane proteins and peptides. Journal of Structural Biology, 157 (3): 593–605, 2007.
[5] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swami-nathan, and M. Karplus, CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem., 4 (2): 187–217, 1983.
[6] D. Case, T. Darden, T. Cheatham, C. Simmerling, J. Wang, R. Duke, R. Luo, K. Merz, D. Pearlman, M. Crowley, R. Walker, W. Zhang, B. Wang, S. Hayik, A. Roitberg, G. Seabra, K. Wong, F. Paesani, X. Wu, S. Brozell, V. Tsui, H. Gohlke, L. Yang, C. Tan, J. Mongan, V. Hornak, G. Cui, P. Beroza, D. Mathews, C. Schafmeister, W. Ross, and P. Kollman, AMBER 9. Technical report, UCSF, 2006.
[7] M. Chavent, B. Lévy, and B. Maigret, MetaMol: High quality visualization of Molecular Skin Surface. Journal of Molecular Graphics and Modelling, 27 (2): 209–216, 2008.
[8] M. L. Connolly, Analytical Molecular Surface Calculation. J. Appl. Cryst., 16: 548–558, 1983.
[9] R. de Toledo and B. Lévy, Extending the graphic pipeline with new GPU-accelerated primitives. Technical report, INRIA-ALICE, 2004.
[10] R. de Toledo, B. Lévy, and J.-C. Paul, Iterative Methods for Visualization of Implicit Surfaces on GPU. In ISVC, International Symposium on Visual Computing, pages 598–609, Nov 2007.
[11] W. L. DeLano, The PyMOL Molecular Graphics System. DeLano Scientific, Palo Alto, CA, USA, 2002. http://www.pymol.org.
[12] H. Edelsbrunner, Deformable smooth surface design. Discrete & Computational Geometry, 21 (1): 87–115, 1999.
[13] H. Edelsbrunner and E. P. Mücke, Three-dimensional alpha shapes. ACM Trans. Graph., 13 (1): 43–72, 1994.
[14] J. Greer and B. L. Bush, Macromolecular shape and surface maps by solvent exclusion. In Proceedings of the National Academy of Science, pages 303–307, Jan 1978.
[15] S. Gumhold, Splatting Illuminated Ellipsoids with Depth Correction. In Proceedings of VMV, pages 245–252, 2003.
[16] A. Halm, L. Offen, and D. W. Fellner, BioBrowser: A Framework for Fast Protein Visualization. In EuroVis05: IEEE VGTC Symposium on Visualization, pages 287–294, 2005.
[17] D. Herbison-Evans, Solving Quartics and Cubics for Graphics. In A. W. Paeth, editor, Graphics Gems V, pages 3–15. 1. edition, 1995.
[18] W. Humphrey, A. Dalke, and K. Schulten, VMD − Visual Molecular Dynamics. Journal of Molecular Graphics, 14: 33–38, 1996.
[19] W. Kabsch, A solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A, 32 (5): 922–923, Sep 1976.
[20] Y. Kanamori, Z. Szego, and T. Nishita, GPU-based Fast Ray Casting for a Large Number of Metaballs. Computer Graphics Forum, 27 (3): 351–360, 2008.
[21] T. Klein and T. Ertl, Illustrating Magnetic Field Lines using a Discrete Particle Model. In Proceedings of VMV, pages 387–394, 2004.
[22] C. H. Lee and A. Varshney, Representing Thermal Vibrations and Uncertainty in Molecular Surfaces. In Proceedings SPIE Conference on Visualization and Data Analysis, pages 80–90, 2002.
[23] C. Loop and J. Blinn, Real-Time GPU Rendering of Piecewise Algebraic Surfaces. ACM Trans. Graph., 25 (3): 664–670, 2006.
[24] T. Luft, C. Colditz, and O. Deussen, Image enhancement by unsharp masking the depth buffer. ACM Trans. Graph., 25 (3): 1206–1213, 2006.
[25] M. Mittring, Finding Next Gen: Cryengine 2. In SIGGRAPH '07: ACM SIGGRAPH 2007 courses, pages 97–121, 2007.
[26] J. Mongan, AMBER Trajectory NetCDF Convention., Feb 2006.
[27] C. Müller, S. Grottel, and T. Ertl, Image-Space GPU Metaballs for Time-Dependent Particle Data Sets. In Proceedings of VMV, pages 31–40, 2007.
[28] G. Perrot, B. Cheng, K. D. Gibson, J. Vila, K. A. Palmer, A. Nayeem, B. Maigret, and H. A. Scheraga, MSEED: A Program for the Rapid Analytical Determination of Accessible Surface Areas and Their Derivatives. J. Comput. Chem., 13 (1): 1–11, 1992.
[29] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem., 25 (13): 1605–1612, Oct 2004.
[30] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, Scalable molecular dynamics with NAMD. J. Comput. Chem., 26 (16): 1781–1802, 2005.
[31] G. Reina and T. Ertl, Hardware-Accelerated Glyphs for Mono- and Dipoles in Molecular Dynamics Visualization. In EuroVis05: IEEE VGTC Symposium on Visualization, pages 177–182, 2005.
[32] F. M. Richards, Areas, Volumes, Packing, and Protein Structure. Annual Review of Biophysics and Bioengineering, 6 (1): 151–176, 1977.
[33] J. Ryu, R. Park, and D.-S. Kim, Molecular surfaces on proteins via beta shapes. Computer-Aided Design, 39 (12): 1042–1057, 2007.
[34] M. Sanner, Sur la modélisation des surfaces moléculaires. PhD thesis, Université de Haute-Alsace, Mulhouse, France, 1992.
[35] M. F. Sanner and A. J. Olson, Real time surface reconstruction for moving molecular fragments. In Pacific Symposium on Biocomputing '97, pages 385–396, 1997.
[36] M. F. Sanner, A. J. Olson, and J.-C. Spehner, Reduced Surface: An Efficient Way to Compute Molecular Surfaces. Biopolymers, 38 (3): 305–320, Dec 1996.
[37] C. Sigg, T. Weyrich, M. Botsch, and M. Gross, GPU-Based Ray-Casting of Quadratic Surfaces. In Eurographics Symposium on Point-Based Graphics, pages 59–65, 2006.
[38] J. M. Singh and P. J. Narayanan, Real-Time Ray-Tracing of Implicit Surfaces on the GPU. Technical Report IIIT/TR/2007/72, International Institute of Information Technology, Hyderabad, India, Jul 2007.
[39] M. Tarini, P. Cignoni, and C. Montani, Ambient Occlusion and Edge Cueing for Enhancing Real Time Molecular Visualization. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 1237–1244, 2006.
[40] M. Totrov and R. Abagyan, The Contour-Buildup Algorithm to Calculate the Analytical Molecular Surface. Journal of Structural Biology, 116: 138–143, 1995.
[41] A. Varshney, F. P. Brooks, and W. V. Wright, Linearly Scalable Computation of Smooth Molecular Surfaces. IEEE Computer Graphics and Applications, 14 (5): 19–25, 1994.
[42] W. Zhao, G. Xu, and C. Bajaj, An algebraic spline model of molecular surfaces. In SPM '07: Proceedings of the 2007 ACM symposium on Solid and physical modeling, pages 297–302, 2007.

Index Terms:
Point-based Data, Time-varying Data, GPU, Ray Casting, Molecular Visualization, Surface Extraction, Isosurfaces
Citation:
Michael Krone, Katrin Bidmon, Thomas Ertl, "Interactive Visualization of Molecular Surface Dynamics," IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp. 1391-1398, Nov.-Dec. 2009, doi:10.1109/TVCG.2009.157
Usage of this product signifies your acceptance of the Terms of Use.