The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.06 - November/December (2009 vol.15)
pp: 1359-1366
Teng-Yok Lee , The Ohio State University
Han-Wei Shen , The Ohio State University
ABSTRACT
We present a new algorithm to explore and visualize multivariate time-varying data sets. We identify important trend relationships among the variables based on how the values of the variables change over time and how those changes are related to each other in different spatial regions and time intervals. The trend relationships can be used to describe the correlation and causal effects among the different variables. To identify the temporal trends from a local region, we design a new algorithm called SUBDTW to estimate when a trend appears and vanishes in a given time series. Based on the beginning and ending times of the trends, their temporal relationships can be modeled as a state machine representing the trend sequence. Since a scientific data set usually contains millions of data points, we propose an algorithm to extract important trend relationships in linear time complexity. We design novel user interfaces to explore the trend relationships, to visualize their temporal characteristics, and to display their spatial distributions. We use several scientific data sets to test our algorithm and demonstrate its utilities.
INDEX TERMS
SUBDTW, trend sequence, trend sequence clustering
CITATION
Teng-Yok Lee, Han-Wei Shen, "Visualization and Exploration of Temporal Trend Relationships in Multivariate Time-Varying Data", IEEE Transactions on Visualization & Computer Graphics, vol.15, no. 6, pp. 1359-1366, November/December 2009, doi:10.1109/TVCG.2009.200
REFERENCES
[1] H. Akiba, N. Fout, and K.-L. Ma, Simultaneous classification of time-varying volume data based on the time histogram. In EuroVis '06: Proceedings of the Joint Eurographics - IEEE VGTC Symposium on Visualization 2006, pages 1–8, 2006.
[2] H. Akiba and K.-L. Ma, A tri-space visualization interface for analyzing time-varying multivariate volume data. In EuroVis '07: Proceedings of the Joint Eurographics - IEEE VGTC Symposium on Visualization 2007, pages 115–122, 2007.
[3] C. L. Bajaj, V. Pascucci, G. Rabbiolo, and D. Schikorc, Hypervolume visualization: a challenge in simplicity. In VVS '98: Proceedings of the IEEE Symposium on Volume Visualization 1998, pages 95–102, 1998.
[4] J. Blaas, C. Botha, and F. Post, Extensions of parallel coordinates for interactive exploration of large multi-timepoint data sets. IEEE Transactions on Visualization and Computer Graphics, 14 (6): 1436–1451, 2008.
[5] J. A. Fails, A. Karlson, L. Shahamat, and B. Shneiderman, A visual interface for multivariate temporal data: Finding patterns of events across multiple histories. In VAST'06: Proceedings of the IEEE Symposium On Visual Analytics Science And Technology 2006, pages 167–174, 2006.
[6] Z. Fang, T. Möller, G. Hamarneh, and A. Celler, Visualization and exploration of time-varying medical image data sets. In GI '07: Proceedings of Graphics Interface 2007, pages 281–288, 2007.
[7] N. Fout, K.-L. Ma, and J. Ahrens, Time-varying, multivariate volume data reduction. In SAC '05: Proceedings of the ACM Symposium on Applied Computing 2005, pages 1224–1230, New York, NY, USA, 2005. ACM.
[8] M. Glatter, J. Huang, S. Ahern, J. Daniel, and A. Lu, Visualizing temporal patterns in large multivariate data using modified globbing. IEEE Transactions on Visualization and Computer Graphics, 14 (6): 1467– 1474, 2008.
[9] L. J. Gosink, J. C. Anderson, W. E. Bethel, and K. I. Joy, Variable interactions in query-driven visualization. IEEE Transactions on Visualization and Computer Graphics, 13 (6): 1400–1407, 2007.
[10] H. Guo, R. Renaut, K. Chen, and E. Reiman, Clustering huge data sets for parametric pet imaging.M BioSystems, 71 (1–2): 81–92, 2003.
[11] S. Havre, E. Hetzler, P. Whitney, and L. Nowell, Themeriver: Visualizing thematic changes in large document collections. IEEE Transactions on Visualization and Computer Graphics, 8 (1): 9–20, 2002.
[12] H. Hochheiser and B. Shneiderman, Dynamic query tools for time series data sets: timebox widgets for interactive exploration. Information Visualization, 3 (1): 1–18, 2004.
[13] A. Inselberg, Multidimensional detective. In INFOVIS '97: Proceedings of the IEEE Symposium on Information Visualization '97, pages 100–107, 1997.
[14] J. Johansson, P. Ljung, and M. Cooper, Depth cues and density in temporal parallel coordinates. In EuroVis '07: Proceedings of the Joint Euro-graphics - IEEE VGTC Symposium on Visualization 2007, pages 35–42, 2007.
[15] T.-Y. Lee and H.-W. Shen, Visualizing time-varying features with tac-based distance fields. In PV'09: Proceeding of IEEE Pacific Visualization Symposium 2009, pages 1–8, Los Alamitos, CA, USA, 2009. IEEE Computer Society.
[16] P. S. Mccormick, J. Inman, J. P. Ahrens, C. Hansen, and G. Roth, Scout: A hardware-accelerated system for quantitatively driven visualization and analysis. In VIS '04: Proceedings of the IEEE Visualization 2004, pages 171–178, 2004.
[17] K. McDonnell and K. Mueller, Illustrative parallel coordinates. Computer Graphics Forum, 27 (3): 1031–1038, 2008.
[18] P. J. Moran and C. Henze, Large field visualization with demand-driven calculation. In VIS '99: Proceedings of the IEEE Visualization '99, pages 27–33, 1999.
[19] P. Muigg, J. Kehrer, S. Oeltze, H. Piringer, H. Doleisch, B. Preim, and H. Hauser, A four-level focus+context approach to interactive visual analysis of temporal features in large scientific data. Computer Graphics Forum, 27 (3): 775–782, 2008.
[20] M. ten Caat and N. M. Maurits, Design and evaluation of tiled parallel coordinate visualization of multichannel eeg data. IEEE Transactions on Visualization and Computer Graphics, 13 (1): 70–79, 2007.
[21] C. Tominski, J. Abello, and H. Schumann, Axes-based visualizations with radial layouts. In SAC '04: Proceedings of the ACM Symposium on Applied Computing 2004, pages 1242–1247, 2004.
[22] C. Wang, H. Yu, and K.-L. Ma, Importance-driven time-varying data visualization. IEEE Transactions on Visualization and Computer Graphics, 14 (6): 1547–1554, 2008.
[23] D. Whalen and M. L. Norman, Competition data set and description. 2008 IEEE Visualization Design Contest, 2008. http://vis.computer.org/VisWeek2008/viscontests.html.
[24] J. Woodring and H.-W. Shen, Chronovolumes: A direct rendering technique for visualizing time-varying data. In VG '03: Proceedings of the Third International Workshop on Volume Graphics 2003, pages 27–34, 2003.
[25] J. Woodring and H.-W. Shen, Multiscale time activity data exploration via temporal clustering visualization spreadsheet. IEEE Transactions on Visualization and Computer Graphics, 15 (1): 123–137, 2009.
[26] J. Woodring, C. Wang, and H.-W. Shen, High dimensional direct rendering of time-varying volumetric data. In VIS '03: Proceedings of the IEEE Visualization 2003, pages 417–424, 2003.
35 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool