
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
J. Tierny, A. Gyulassy, E. Simon, V. Pascucci, "Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees," IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp. 11771184, November/December, 2009.  
BibTex  x  
@article{ 10.1109/TVCG.2009.163, author = {J. Tierny and A. Gyulassy and E. Simon and V. Pascucci}, title = {Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {15}, number = {6}, issn = {10772626}, year = {2009}, pages = {11771184}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.163}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees IS  6 SN  10772626 SP1177 EP1184 EPD  11771184 A1  J. Tierny, A1  A. Gyulassy, A1  E. Simon, A1  V. Pascucci, PY  2009 KW  Surgery KW  Tree graphs KW  Data visualization KW  Isosurfaces KW  Data mining KW  Topology KW  Algorithm design and analysis KW  Stress KW  Scalability KW  Level set KW  topological simplification KW  Reeb graph KW  scalar field topology KW  isosurfaces VL  15 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] AIM@SHAPE Shape Repository. http://shapes.aimatshape.net/, 2006.
[2] P. K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang, Extreme elevation on a 2manifold. In ACM Symp. on Computational Geometry, pages 357–365, 2004.
[3] G. Aujay, F. Hétroy, F. Lazarus, and C. Depraz, Harmonic skeletons for realistic character animation. In Eurographics Symp. on Computer Animation, pages 151–160, 2007.
[4] C. L. Bajaj, V. Pascucci, and D. Schikore, The contour spectrum. In IEEE Visualization, pages 167–174, 1997.
[5] S. Biasotti, B. Falcidieno, and M. Spagnuolo, Extended Reeb graphs for surface understanding and description. In Discrete Geometry for Computer Imagery, pages 185–197, 2000.
[6] S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno, Reeb graphs for shape analysis and applications. Theoretical Computer Science, 392: 5– 22, 2008.
[7] H. Carr, J. Snoeyink, and U. Axen, Computing contour trees in all dimensions. In ACM Symp. on Discrete Algorithms, pages 918–926, 2000.
[8] H. Carr, J. Snoeyink, and M. V. de Panne, Simplifying flexible isosurfaces using local geometric measures. In IEEE Visualization, pages 497–504, 2004.
[9] K. ColeMcLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, Loops in Reeb graphs of 2manifolds. In ACM Symp. on Computational Geometry, pages 344–350, 2003.
[10] M. de Berg and M. J. van Kreveld, Trekking in the alps without freezing or getting tired. In European Symp. on Algorithms, pages 121–132, 1993.
[11] T. K. Dey and S. Guha, Computing homology groups of simplicial complexes in R3. Journal of the ACM, 45: 266–287, 1998.
[12] H. Doraiswamy and V. Natarajan, Efficient outputsensitive construction of Reeb graphs. In International Symp. on Algorithms and Computation, pages 557–568, 2008.
[13] H. Doraiswamy and V. Natarajan, Efficient algorithms for computing Reeb graphs. Computational Geometry: Theory and Applications, 42: 606–616, 2009.
[14] H. Edelsbrunner and E. P. Mucke, Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. on Graphics, 9: 66–104, 1990.
[15] A. Hatcher, Algebraic Topology. Cambridge University Press, 2002.
[16] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. Kunii, Topology matching for fully automatic similarity estimation of 3D shapes. In SIGGRAPH, pages 203–212, 2001.
[17] J. Milnor, Morse Theory. Princeton University Press, 1963.
[18] V. Pascucci and K. ColeMcLaughlin, Parallel computation of the topology of level sets. Algorithmica, 38: 249–268, 2003.
[19] V. Pascucci, G. Scorzelli, P. T. Bremer, and A. Mascarenhas, Robust online computation of Reeb graphs: simplicity and speed. ACM Trans. on Graphics, 26: 58.1–58.9, 2007.
[20] G. Patanè, M. Spagnuolo, and B. Falcidieno, Reeb graph computation based on minimal contouring. In IEEE Shape Modeling International, pages 73–82, 2008.
[21] G. Reeb, Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique. Comptesrendus de l'Académie des Sciences, 222: 847–849, 1946.
[22] Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien, Surface coding based on Morse theory. IEEE Computer Graphics and Applications, 11: 66–78, 1991.
[23] S. Tarasov and M. Vyalyi, Construction of contour trees in 3D in O((n) log (n)) steps. In ACM Symp. on Computational Geometry, pages 68–75, 1998.
[24] M. van Kreveld, R. van Oostrum, L. Bajaj, C, V. Pascucci, and R. Shcikore, D. Contour, trees and small seed sets for isosurface traversal. In ACM Symp. on Computational Geometry, pages 212–220, 1997.
[25] C. T. C. Wall, Surgery on compact manifolds. American Mathematical Society, 1970.
[26] G. H. Weber, P.T. Bremer, and V. Pascucci, Topological landscapes: a terrain metaphor for scientific data. IEEE Trans. on Visualization and Computer Graphics, 13: 1416–1423, 2007.
[27] G. H. Weber, S. E. Dillard, H. Carr, V. Pascucci, and B. Hamann, Topologycontrolled volume rendering. IEEE Trans. on Visualization and Computer Graphics, 13: 330–341, 2007.
[28] J. Wood, Z, H. Hoppe, M. Desbrun, and P. Schrder, Removing excess topology from isosurfaces. ACM Trans. on Graphics, 23: 190–208, 2004.
[29] E. Zhang, K. Mischaikow, and G. Turk, Featurebased surface parametrization and texture mapping. ACM Trans. on Graphics, 24: 1– 27, 2005.