
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Yanhua Chen, Lijun Wang, Ming Dong, Jing Hua, "Exemplarbased Visualization of Large Document Corpus (InfoVis20091115)," IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp. 11611168, November/December, 2009.  
BibTex  x  
@article{ 10.1109/TVCG.2009.140, author = {Yanhua Chen and Lijun Wang and Ming Dong and Jing Hua}, title = {Exemplarbased Visualization of Large Document Corpus (InfoVis20091115)}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {15}, number = {6}, issn = {10772626}, year = {2009}, pages = {11611168}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.140}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Exemplarbased Visualization of Large Document Corpus (InfoVis20091115) IS  6 SN  10772626 SP1161 EP1168 EPD  11611168 A1  Yanhua Chen, A1  Lijun Wang, A1  Ming Dong, A1  Jing Hua, PY  2009 KW  Exemplar KW  largescale document visualization KW  multidimensional projection. VL  15 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] P. Berkhin Survey of clustering data mining techniques. Technical report, Accrue Software, San Jose, CA, 2002.
[2] M. W. Berry, S. A. Pulatova, and G. W. Stewart Algorithm 844: Computing sparse reducedrank approximations to sparse matrices. ACM Trans. Math. Softw., 31 (2): pp. 252–269, 2005.
[3] K. Borner, C. Chen, and K. Boyack Visualizing knowledge domains. , Ann. Rev. Information Science and Technology, 37 1–51:, 2003.
[4] T. Cox and M. Cox, Multidimensional Scaling. Chapman and Hall/CRC, 2nd. ed., 2001.
[5] M. C. F. de Oliveira and H. Levkowitz From visual data exploration to visual data mining: a survey. , IEEE Trans. on Visualiztion and Computer Graphics, 9 (3): pp. 378–394, 2003.
[6] C. Ding, T. Li, and M. I. Jordan, Convex and seminonnegative matrix factorizations. IEEE Trans. on Pattern Analysis and Machine Intelligence, accepted by 2008, to appear.
[7] C. Ding, T. Li, and W. Peng, On the equivalence between nonnegative matrix factorization and probabilistic latent semantic indexing. Computational Statistics and Data Analysis, 52 (8): pp. 3913–3927, 2008.
[8] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Wiley, New York, 2nd edition, 2001.
[9] Y.H. Fua, M. Ward, and E. A. Rundensteiner Hierarchical parallel coordinates for exploration of large datasets. In proc. of VIS, pages 43–50, 1999.
[10] T. Hofmann Probablistic latent semantic analysis. In proc. of UAI, pages 289–296, 1999.
[11] T. Iwata, K. Saito, N. Ueda, S. Stromsten, T. L. Griffiths, and J. B. Tenenbaum Parametric embedding for class visualization. Neural Computation, 19 2536–2556:, 2007.
[12] T. Iwata, T. Yamada, and N. Ueda Probabilistic latent semantic visualization: Topic model for visualizing documents. In proc. of KDD, pages 363–371, 2008.
[13] I. T. Jolliffe, Principal Component Analysis. SpringerVerlag, 2nd edition, 2002.
[14] K. Lang News weeder: Learning to filter netnews. In proc. of ICML, pages 331–339, 1995.
[15] G. McLachlan, and D. Peel, Finite Mixture Models. New York: John Wiley & Sons, Inc., first edition, 2002.
[16] F. Paulovich and R. Minghim, Hipp: A novel hierarchical point placement strategy and its application to the exploration of document collections. IEEE Trans. on Visualization and Computer Graphics, 14 (6): 1229–1236, 2008.
[17] F. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz, Least square projection: a fast highprecision multidimensional projection technique and its application to document mapping. IEEE Trans. on Visualiztion and Computer Graphics, 14 (3): pp. 564–575, 2008.
[18] D. Petros, K. Ravi, and W. M. Michael Fast monte carlo algorithms for matrices iii: Computing a compressed approximate matrix decomposition. SIAM Journal on Computing, 36 184–206:, 2006.
[19] M. Porter An algorithm for suffix stripping. Program, 14 (3): pp. 130–137, 1980.
[20] S. T. Roweis, and L. K. Saul Nonlinear dimensionality reduction by locally linear embedding. Science, 290 (5500): 2323 − 2326, 2000.
[21] T. Soukup, and I. Davidson, Visual Data Mining: Techniques and Tools for Data Visualization and Mining. John Wiley & Sons, Inc., 1st edition, 2002.
[22] J. Sun, Y. Xie, H. Zhang, and C. Faloutsos Less is more: Sparse graph mining with compact matrix decomposition. , Statistical Analysis and Data Mining, 1 (1): pp. 6–22, 2008.
[23] R. Tejada, R. Minghim, and L. Nonato On improved projection techniques to support visual exploaration of mutlidimensional data sets. Information Visualization, 2 (4): pp. 218–231, 2003.
[24] J. B. Tenenbaum, V. de Silva, and J. C. Langford A global geometric framework for nonlinear dimensionality reduction. Science, 290 (5500): 2319–2323, 2000.