The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.06 - November/December (2009 vol.15)
pp: 1001-1008
Xiaoru Yuan , Key Laboratory of Machine Perception & Peking University
Peihong Guo , Key Laboratory of Machine Perception & Peking University
He Xiao , Key Laboratory of Machine Perception & Peking University
Hong Zhou , Hong Kong University of Science and Technology
Huamin Qu , Hong Kong University of Science and Technology
ABSTRACT
In this paper, we present a novel parallel coordinates design integrated with points (Scattering Points in Parallel Coordinates, SPPC), by taking advantage of both parallel coordinates and scatterplots. Different from most multiple views visualization frameworks involving parallel coordinates where each visualization type occupies an individual window, we convert two selected neighboring coordinate axes into a scatterplot directly. Multidimensional scaling is adopted to allow converting multiple axes into a single subplot. The transition between two visual types is designed in a seamless way. In our work, a series of interaction tools has been developed. Uniform brushing functionality is implemented to allow the user to perform data selection on both points and parallel coordinate polylines without explicitly switching tools. A GPU accelerated Dimensional Incremental Multidimensional Scaling (DIMDS) has been developed to significantly improve the system performance. Our case study shows that our scheme is more efficient than traditional multi-view methods in performing visual analysis tasks.
INDEX TERMS
Parallel Coordinates, Scatterplots, Information Visualization, Multidimensional Scaling
CITATION
Xiaoru Yuan, Peihong Guo, He Xiao, Hong Zhou, Huamin Qu, "Scattering Points in Parallel Coordinates", IEEE Transactions on Visualization & Computer Graphics, vol.15, no. 6, pp. 1001-1008, November/December 2009, doi:10.1109/TVCG.2009.179
REFERENCES
[1] M. Ankerst, S. Berchtold, and D. A. Keim, Similarity clustering of dimensions for an enhanced visualization of multidimensional data. In Proceedings of the IEEE InfoVis'98, pages 52–60, 1998.
[2] A. O. Artero, M. C. F. de Oliveira, and H. Levkowitz, Uncovering clusters in crowded parallel coordinates visualizations. In Proceedings of the IEEE InfoVis'04, pages 81–88, 2004.
[3] D. Asimov, The grand tour: a tool for viewing multidimensional data. SIAM J. Sci. Stat. Comput., 6 (1): 128–143, 1985.
[4] S. Bachthaler and D. Weiskopf, Continuous scatterplots. IEEE Trans. Vis. Comput. Graph., 14 (6): 1428–1435, 2008.
[5] M. Q. W. Baldonado, A. Woodruff, and A. Kuchinsky, Guidelines for using multiple views in information visualization. In Proceedings of AVI'00, pages 110–119. ACM, 2000.
[6] W. Basalaj, Incremental multidimensional scaling method for database visualization. In Proceedings of Visual Data Exploration and Analysis VI, SPIE, pages 149–158, 1999.
[7] F. Bendix, R. Kosara, and H. Hauser, Parallel sets: visual analysis of categorical data. In Proceedings of the IEEE InfoVis'05, pages 133–140, 2005.
[8] M. R. Berthold and L. O. Hall, Visualizing fuzzy points in parallel coordinates. IEEE Trans. Fuzzy Sys., 11 (3): 369–374, 2003.
[9] E. Bertini, L. Dell'Aquila, and G. Santucci, Spring View: cooperation of radviz and parallel coordinates for view optimization and clutter reduction. In Proceedings of CMV'05, pages 22–29, Jul. 2005.
[10] E. Catmull and R. Rom, A class of local interpolating splines. In R. Barn-hill and R. Riesenfe, editors, Computer Aided Geometric Design, pages 317–326, New York, 1974. Academic Press.
[11] M. Chalmers, A linear iteration time layout algorithm for visualising high-dimensional data. In Proceedings of the IEEE Visualization'96, pages 127–133, 1996.
[12] W. C. Cleveland and M. E. McGill, Dynamic Graphics for Statistics. CRC Press, Inc., Boca Raton, FL, USA, 1988.
[13] P. Craig and J. Kennedy, Coordinated graph and scatter-plot views for the visual exploration of microarray time-series data. In Proceedings of the IEEE InfoVis'03, pages 197–201, 2003.
[14] S. L. Crawford and T. C. Fall, Projection pursuit techniques for the visualization of high dimensional datasets. Visualization in Scientific Computing, pages 94–108, 1990.
[15] G. Ellis and A. Dix, Enabling automatic clutter reduction in parallel coordinate plots. IEEE Trans. Vis. Comput. Graph., 12 (5): 717–724, 2006.
[16] N. Elmqvist, P. Dragicevic, and J.-D. Fekete, Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation. IEEE Trans. Vis. Comput. Graph., 14 (6): 1539–1148, 2008.
[17] E. Fanea, S. Carpendale, and T. Isenberg, An interactive 3d integration of parallel coordinates and star glyphs. In Proceedings of the IEEE InfoVis'05, pages 149–156, 2005.
[18] Y.-H. Fua, M. O. Ward, and E. A. Rundensteiner, Hierarchical parallel coordinates for exploration of large datasets. In Proceedings of the IEEE Visualization'99, pages 43–50, 1999.
[19] M. Graham and J. Kennedy, Using curves to enhance parallel coordinate visualisations. In Proceedings of the Intl. Conf. on Information Visualization, pages 10–16, Jul. 2003.
[20] H. Hauser, F. Ledermann, and H. Doleisch, Angular brushing of extended parallel coordinates. In Proceedings of the IEEE InfoVis'02, pages 127–130, 2002.
[21] P. Hoffman, G. Grinstein, K. Marx, I. Grosse, and E. Stanley, Dna visual and analytic data mining. In Proceedings of the IEEE Visualization'97, pages 437–441, 1997.
[22] N. Inc, Nvidia CUDA programming guide. http://www.nvidia.com/objectcuda home.html, 2007.
[23] S. Ingram, T. Munzner, and M. Olano, Glimmer: Multilevel mds on the gpu. IEEE Trans. Vis. Comput. Graph., 15 (2): 249–261, 2009.
[24] A. Inselberg, The plane with parallel coordinates. The Visual Computer, 1 (2): 69–91, 1985.
[25] A. Inselberg and B. Dimsdale, Parallel coordinates: a tool for visualizing multi-dimensional geometry. In Proceedings of the IEEE Visualization'90, pages 361–378, 1990.
[26] J. Johansson, M. Cooper, and M. Jern, 3-dimensional display for clustered multi-relational parallel coordinates. In Proceedings of the Intl. Conf. on Information Visualization, pages 188–193, 2005.
[27] J. Johansson, P. Ljung, M. Jern, and M. Cooper, Revealing structure within clustered parallel coordinates displays. In Proceedings of the IEEE InfoVis'05, pages 125–132, 2005.
[28] R. Kosara, F. Bendix, and H. Hauser, Parallel sets: interactive exploration and visual analysis of categorical data. IEEE Trans. Vis. Comput. Graph., 12 (4): 558–568, 2006.
[29] K. T. McDonnell and K. Mueller, Illustrative parallel coordinates. Computer Graphics Forum, 27 (3): 1031–1038, 2008.
[30] M. Novotny, Visually effective information visualization of large data. In Proceedings of CESCG'04, pages 41–48. CRC Press, 2004.
[31] M. Novotny and H. Hauser, Outlier-preserving focus+context visualization in parallel coordinates. IEEE Trans. Vis. Comput. Graph., 12 (5): 893–900, 2006.
[32] W. Peng, M. O. Ward, and E. A. Rundensteiner, Clutter reduction in multi-dimensional data visualization using dimension reordering. In Proceedings of the IEEE InfoVis'04, pages 89–96, 2004.
[33] C. Schmid and H. Hinterberger, Comparative multivariate visualization across conceptually different graphic displays. In Proceedings of SSDBM'94, pages 42–51, 1994.
[34] H. Siirtola, Direct manipulation of parallel coordinates. In Proceedings of the Intl. Conf. on Information Visualization, pages 373–378, 2000.
[35] H. Siirtola, Combining parallel coordinates with the reorderable matrix. In Proceedings of CMV'03, pages 63–74, 2003.
[36] H. Theisel, Higher order parallel coordinates. In Proceedings of VMV'00, pages 415–420, 2000.
[37] R. Wegenkittl, H. Löffelmann, and E. Gröller, Visualizing the behaviour of higher dimensional dynamical systems. In Proceedings of the IEEE Visualization'97, pages 119–125, 1997.
[38] E. J. Wegman and Q. Luo, High dimensional clustering using parallel coordinates and the grand tour. Computing Science and Statistics, 28: 352–360, 1997.
[39] N. Wong, S. Carpendale, and S. Greenberg, Edgelens: An interactive method for managing edge congestion in graphs. In Proceedings of the IEEE InfoVis'03, pages 51–58, 2003.
[40] P. C. Wong and R. D. Bergeron, Multiresolution multidimensional wavelet brushing. In Proceedings of the IEEE Visualization'96, pages 141–148, 1996.
[41] P. C. Wong and R. D. Bergeron, Multivariate visualization using metric scaling. In Proceedings of the IEEE Visualization'97, pages 111–118, 1997.
[42] J. Yang, W. Peng, M. O. Ward, and E. A. Rundensteiner, Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets. In Proceedings of IEEE InfoVis'09, pages 105–112, 2003.
[43] H. Zhou, W. Cui, H. Qu, Y. Wu, X. Yuan, and W. Zhou, Splatting the lines in parallel coordinates. Computer Graphics Forum, 28 (3): 759–766, 2009.
[44] H. Zhou, X. Yuan, H. Qu, W. Cui, and B. Chen, Visual clustering in parallel coordinates. Computer Graphics Forum, 27 (3): 1047–1054, 2008.
21 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool