The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.06 - November/December (2009 vol.15)
pp: 921-928
Tamara Munzner , University of British Columbia
ABSTRACT
We present a nested model for the visualization design process withfour layers: characterize the problem domain, abstract into operationson data types, design visual encoding and interaction techniques, andcreate algorithms to execute techniques efficiently. The output from alevel above is input to the level below, bringing attention to thedesign challenge that an upstream error inevitably cascades to alldownstream levels. This model provides prescriptive guidance fordetermining appropriate evaluation approaches by identifying threatsto validity unique to each level. We call attention to specific stepsin the design and evaluation process that are often given shortshrift. We also provide three recommendations motivated by this model:authors should distinguish between these levels when claimingcontributions at more than one of them, authors should explicitlystate upstream assumptions at levels above the focus of a paper, andvisualization venues should accept more papers on domaincharacterization.
INDEX TERMS
Models, frameworks, design, evaluation.
CITATION
Tamara Munzner, "A Nested Process Model for Visualization Design and Validation", IEEE Transactions on Visualization & Computer Graphics, vol.15, no. 6, pp. 921-928, November/December 2009, doi:10.1109/TVCG.2009.111
REFERENCES
[1] R. Amar, J. Eagan, and J. Stasko, Low-level components of analytic activity in information visualization. In Proc. IEEE Symposium on Information Visualization (InfoVis), pages 111–117, 2005.
[2] R. Amar and J. Stasko, A knowledge task-based framework for the design and evaluation of information visualizations. In Proc. IEEE Symposium on Information Visualization (InfoVis), pages 143–149, 2004.
[3] K. Andrews, Evaluating information visualizations. In Proc. AVI Workshop on BEyond time and errors: novel evaLuation methods for Information Visualization (BELIV). ACM, 2006. Article 1.
[4] K. Andrews, Evaluation comes in many guises. AVI Workshop on BEyond time and errors (BELIV) Position Paper, 2008. www.dis. uniroma1.it/~beliv08/pospapandrews.pdf .
[5] D. Archambault, T. Munzner, and D. Auber, TopoLayout: Multilevel graph layout by topological features. IEEE Trans. on Visualization and Computer Graphics, 13 (2): 305–317, March/April 2007.
[6] A. Barsky, T. Munzner, J. Gardy, and R. Kincaid, Cerebral: Visualizing multiple experimental conditions on a graph with biological context. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis '08), 14 (6): 1253–1260, 2008.
[7] S. K. Card and J. Mackinlay, The structure of the information visualization design space. In Proceedings of the 1997 IEEE Symposium on Information Visualization (InfoVis), pages 92–99, 1997.
[8] S. K. Card, J. Mackinlay, and B. Shneiderman, Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, 1999.
[9] S. Carpendale, Evaluating information visualizations. In A. Kerren, J. T. Stasko, J.-D. Fekete, and C. North editors, , Information Visualization: Human-Centered Issues and Perspectives, volume 4950, pages 19–45. Springer LNCS, 2008.
[10] E. H. Chi and J. T. Riedl, An operator interaction framework for visualization systems. In Proc. IEEE Symposium on Information Visualization (InfoVis), pages 63–70, 1998.
[11] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. MIT Press, 1990.
[12] S. Dow, B. MacIntyre, J. Lee, C. Oezbek, J. D. Bolter, and M. Gandy, Wizard of Oz support throughout an iterative design process. IEEE Pervasive Computing, 4 (4): 18–26, Oct-Dec 2005.
[13] G. Ellis and A. Dix, An explorative analysis of user evaluation studies in information visualisation. In Proc. AVI Workshop on BEyond time and errors: novel evaLuation methods for Information Visualization (BELIV). ACM, 2006. Article 2.
[14] S. Faisal, B. Craft, P. Cairns, and A. Blandford, Internalization, qualitative methods, and evaluation. In Proc. AVI Workshop on BEyond time and errors: novel evaLuation methods for Information Visualization (BELIV). ACM, 2008. Article 5.
[15] V. González and A. Kobsa, A workplace study of the adoption of information visualization systems. Proc. Intl. Conf. Knowledge Management (I-KNOW), pages 92–102, 2003.
[16] J. Heer, N. Kong, and M. Agrawala, Sizing the horizon: The effects of chart size and layering on the graphical perception of time series visualizations. In Proc. ACM Human Factors in Computing Systems (CHI), pages 1303–1312, 2009.
[17] N. Henry and J.-D. Fekete, MatrixExplorer: a dual-presentation system to explore social networks. IEEE Trans. Visualization and Computer Graphics (Proc. Infovis '06), 12 (5): 677–684, 2006.
[18] C. Henze, Feature detection in linked derived spaces. In IEEE Conf. Visualization (Vis), pages 87–94, 1998.
[19] P. Isenberg, A. Tang, and S. Carpendale, An exploratory study of visual information analysis. In Proc. ACM Conf. on Human Factors in Computing Systems (CHI), pages 1217–1226, 2008.
[20] P. Isenberg, T. Zuk, C. Collins, and S. Carpendale, Grounded evaluation of information visualizations. In Proc. AVI Workshop on BEyond time and errors: novel evaLuation methods for Information Visualization (BELIV). ACM, 2008. Article 6.
[21] G. Kindlmann, Transfer functions in direct volume rendering: Design, interface, interaction. SIGGRAPH 2002 Course Notes. http://www. cs.utah.edu/~gk/paperssig02-TF-notes.pdf.
[22] R. Kosara, C. G. Healey, V. Interrante, D. H. Laidlaw, and C. Ware, Thoughts on user studies: Why, how, and when. IEEE Computer Graphics and Applications, 23 (4): 20–25, 2003.
[23] H. Lam, A framework of interaction costs in information visualization. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis '08), 14 (6): 1149–1156, 2008.
[24] H. Lam, D. Russell, D. Tang, and T. Munzner, Session Viewer: Visual exploratory analysis of web session logs. In Proc. IEEE Symposium on Visual Analytics Science and Technology (VAST), pages 147–154, 2007.
[25] B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry, Task taxonomy for graph visualization. In Proc. AVI Workshop on BEyond time and errors: novel evaLuation methods for Information Visualization (BELIV). ACM, 2006.
[26] J. D. Mackinlay, Automating the design of graphical presentations of relational information. ACM Trans. on Graphics (TOG), 5 (2): 111–141, 1986.
[27] M. J. McGuffin and R. Balakrishnan, Interactive visualization of genealogical graphs. In Proc. IEEE Symposium on Information Visualization (InfoVis), pages 17–24, 2005.
[28] P. McLachlan, T. Munzner, E. Koutsofios, and S. North, LiveRAC - interactive visual exploration of system management time-series data. In Proc. ACM Conf. Human Factors in Computing Systems (CHI), pages 1483–1492, 2008.
[29] T. Munzner, Process and pitfalls in writing infovis research papers. In A. Kerren, J. T. Stasko, J.-D. Fekete, and C. North editors, , Information Visualization: Human-Centered Issues and Perspectives, volume 4950 of LNCS, pages 133–153. Springer-Verlag, 2008.
[30] T. Munzner and P. Burchard, Visualizing the structure of the world wide web in 3D hyperbolic space. In Proc. Virtual Reality Modeling Language Symposium (VRML), pages 33–38. ACM SIGGRAPH, 1995.
[31] A. Noack, An energy model for visual graph clustering. In Proc. Graph Drawing (GD'03), volume 2912 of LNCS, pages 425–436. Springer-Verlag, 2003.
[32] D. Phan, L. Xiao, R. Yeh, P. Hanrahan, and T. Winograd, Flow map layout. In Proc. IEEE Symposium on Information Visualization (InfoVis), pages 219–224, 2005.
[33] C. Plaisant, The challenge of information visualization evaluation. In Proc. Advanced Visual Interfaces (AVI), pages 109–116. ACM Press, 2004.
[34] A. J. Pretorius and J. J. van Wijk, What does the user want to see? what do the data want to be? Information Visualization Journal, 2009. advance online publication Jun 4, doi:10.1057/ivs.2009.13.
[35] H. C. Purchase, N. Andrienko, T. Jankun-Kelly, and M. Ward, Theoretical foundations of information visualization. In A. Kerren, J. T. Stasko, J.-D. Fekete, and C. North editors, , Information Visualization: Human-Centered Issues and Perspectives, volume 4950 of LNCS, pages 46–64. Springer-Verlag, 2008.
[36] G. Robertson, R. Fernandez, D. Fihser, B. Lee, and J. Stasko, Effectiveness of animation in trend visualization. IEEE Trans. Visualization and Computer Graphics (Proc. Infovis '08), 14 (6): 1325–1332, 2008.
[37] P. Saraiya, C. North, and K. Duca, An insight-based methodology for evaluating bioinformatics visualizations. IEEE Trans. Visualization and Computer Graphics (TVCG), 11 (4): 443–456, 2005.
[38] B. Shneiderman, The eyes have it: A task by data type taxonomy of information visualization. In Proc. IEEE Visual Languages, pages 336– 343, 1996.
[39] B. Shneiderman and C. Plaisant, Strategies for evaluating information visualization tools: Multi-dimensional in-depth long-term case studies. In Proc. AVI Workshop on BEyond time and errors: novel evaLuation methods for Information Visualization (BELIV). ACM, 2006. Article 6.
[40] R. R. Springmeyer, M. M. Blattner, and N. L. Max, A characterization of the scientific data analysis process. In Proc. IEEE Visualization (Vis), pages 235–242, 1992.
[41] K. Sugiyama, S. Tagawa, and M. Toda, Methods for visual understanding of hierarchical system structures. IEEE Trans. Systems, Man and Cybernetics, 11 (2): 109–125, 1981.
[42] M. Tory and T. Möller., Human factors in visualization research. IEEE Trans. Visualization and Computer Graphics (TVCG), 10 (1): 72– 84, 2004.
[43] M. Tory and T. Möller., Rethinking visualization: A high-level taxonomy. In Proc. IEEE Symposium on Information Visualization (InfoVis), pages 151–158, 2004.
[44] M. Tory and T. Möller. Evaluating visualizations: Do expert reviews work? , IEEE Computer Graphics and Applications, 25(5), Sept. 2005.
[45] M. Tory and S. Staub-French., Qualitative analysis of visualization: A building design field study. In Proc. AVI Workshop on BEyond time and errors: novel evaLuation methods for Information Visualization (BELIV). ACM, 2008. Article 7.
[46] M. Tory, S. Staub-French, B. Po, and F. Wu, Physical and digital artifact-mediated coordination in building design. Computer Supported Cooperative Work (CSCW), 17 (4): 311–351, Aug. 2008.
[47] E. Valiati, M. Pimenta, and C. M. Freitas, A taxonomy of tasks for guiding the evaluation of multidimensional visualizations. In Proc. AVI Workshop on BEyond time and errors: novel evaLuation methods for Information Visualization (BELIV). ACM, 2006. Article 15.
[48] J. J. van Wijk. Bridging the gaps. IEEE Computer Graphics & Applications, 26 (6): 6–9, 2006.
[49] J. J. van Wijk. Views on visualization. IEEE Trans. Visualization and Computer Graphics, 12 (2): 421–432, 2006.
[50] C. Ware, H. Purchase, L. Colpys, and M. McGill, Cognitive measurements of graph aesthetics. Information Visuazation, 1 (2): 103–110, 2002.
[51] S. Wehrend and C. Lewis, A problem-oriented classification of visualization techniques. In Proc. IEEE Visualization (Vis), pages 139–143, 1990.
[52] J. S. Yi, Y. A. Kang, J. T. Stasko, and J. A. Jacko, Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis '07), 13 (6): 1224–1231, 2007.
[53] T. Zuk, L. Schlesier, P. Neumann, M. S. Hancock, and S. Carpendale, Heuristics for information visualization evaluation. In Proc. AVI Workshop on BEyond time and errors: novel evaLuation methods for Information Visualization (BELIV). ACM, 2008. Article 9.
15 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool