The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.05 - September/October (2009 vol.15)
pp: 747-758
Thomas Kerwin , The Ohio State University and the Ohio Supercomputer Center, Columbus
Han-Wei Shen , The Ohio State University, Columbus
Don Stredney , The Ohio State University and the Ohio Supercomputer Center, Columbus
ABSTRACT
We present techniques to improve visual realism in an interactive surgical simulation application: a mastoidectomy simulator that offers a training environment for medical residents as a complement to using a cadaver. As well as displaying the mastoid bone through volume rendering, the simulation allows users to experience haptic feedback and appropriate sound cues while controlling a virtual bone drill and suction/irrigation device. The techniques employed to improve realism consist of a fluid simulator and a shading model. The former allows for deformable boundaries based on volumetric bone data, while the latter gives a wet look to the rendered bone to emulate more closely the appearance of the bone in a surgical environment. The fluid rendering includes bleeding effects, meniscus rendering, and refraction. We incorporate a planar computational fluid dynamics simulation into our three-dimensional rendering to effect realistic blood diffusion. Maintaining real-time performance while drilling away bone in the simulation is critical for engagement with the system.
INDEX TERMS
Health, virtual reality, volume rendering, blood.
CITATION
Thomas Kerwin, Han-Wei Shen, Don Stredney, "Enhancing Realism of Wet Surfaces in Temporal Bone Surgical Simulation", IEEE Transactions on Visualization & Computer Graphics, vol.15, no. 5, pp. 747-758, September/October 2009, doi:10.1109/TVCG.2009.31
REFERENCES
[1] D. Morris, C. Sewell, F. Barbagli, N. Blevins, S. Girod, and K. Salisbury, “Visuohaptic Simulation of Bone Surgery for Training and Evaluation,” IEEE Trans. Visualization and Computer Graphics, pp.48-57, Nov./Dec. 2006.
[2] M. Agus, A. Giachetti, E. Gobbetti, G. Zanetti, and A. Zorcolo, “Hardware-Accelerated Dynamic Volume Rendering for Real-Time Surgical Simulation,” Proc. Workshop Virtual Reality Interactions and Physical Simulations (VRIPHYS '04), http://www.crs4.it/vic/cgi-binbib, Sept. 2004.
[3] M. Zirkle, D. Roberson, R. Leuwer, and A. Dubrowski, “Using a Virtual Reality Temporal Bone Simulator to Assess Otolaryngology Trainees,” Laryngoscope, vol. 117, no. 2, pp.258-263, Feb. 2007.
[4] J. Stam, “Stable Fluids,” Proc. ACM SIGGRAPH '99, pp.121-128, Aug. 1999.
[5] M. Harris, “Real Time Simulation and Rendering of 3D Fluids,” GPU Gems, R. Fernando, ed., chapter 38, pp.637-665, Addison Wesley, 2004.
[6] Y. Liu, X. Liu, and E. Wu, “Real-Time 3D Fluid Simulation on GPU with Complex Obstacles,” Proc. 12th Pacific Conf. Computer Graphics and Applications (PG '04), pp.247-256, 2004.
[7] W. Li, Z. Fan, X. Wei, and A. Kaufman, “Flow Simulation with Complex Boundaries,” GPU Gems 2, chapter 47, pp.747-764, Addison-Wesley, 2005.
[8] M. Müller, S. Schirm, and M. Teschner, “Interactive Blood Simulation for Virtual Surgery Based on Smoothed Particle Hydrodynamics,” Technology and Health Care: Official J. European Soc. for Eng. and Medicine, vol. 12, no. 1, pp.25-31, 2004.
[9] T. Harada, S. Koshizuka, and Y. Kawaguchi, “Smoothed Particle Hydrodynamics on GPUs,” Proc. Computer Graphics Int'l Conf., pp.63-70, 2007.
[10] K. Kalicki, F. Starzynski, A. Jenerowicz, and K. Marasek, “Simple Ossiculoplasty Surgery Simulation Using Haptic Device,” Proc. Int'l Conf. Multimedia and Ubiquitous Eng., pp.932-936, Apr. 2007.
[11] J. Zátonyia, R. Pageta, G. Székelya, M. Grassia, and M. Bajkab, “Real-Time Synthesis of Bleeding for Virtual Hysteroscopy,” Medical Image Analysis, pp.255-266, June 2005.
[12] C. Wyman, “Interactive Image-Space Refraction of Nearby Geometry,” Proc. Third Int'l Conf. Computer Graphics and Interactive Techniques in Australasia and South East Asia (GRAPHITE '05), pp.205-211, 2005.
[13] M.M. Oliveira and M. Brauwers, “Real-Time Refraction through Deformable Objects,” Proc. 2007 Symp. Interactive 3D Graphics and Games (I3D '07), pp.89-96, 2007.
[14] E. Bourque, J.-F. Dufort, M. Laprade, and P. Poulin, “Simulating Caustics due to Liquid-Solid Interface Menisci,” Proc. Eurographics Workshop Natural Phenomena, E. Galin and N. Chiba, eds., pp.31-40, Sept. 2006.
[15] H.W. Jensen, J. Legakis, and J. Dorsey, “Rendering of Wet Materials,” Rendering Techniques, D. Lischinski and G.W. Larson, eds., pp.273-282, Springer-Verlag, 1999.
[16] M.A. ElHelw, M.S. Atkins, M. Nicolaou, A.J. Chung, and G.-Z. Yang, “Photo-Realistic Tissue Reflectance Modelling for Minimally Invasive Surgical Simulation,” Proc. Medical Image Computing and Computer-Assisted Intervention (MICCAI '05), pp.868-875, 2005.
[17] J. Bryan, D. Stredney, G. Wiet, and D. Sessanna, “Virtual Temporal Bone Dissection: A Case Study,” Proc. IEEE Visualization Conf., pp.497-500, 2001.
[18] D. Stredney, G. Wiet, R. Yagel, D. Sessanna, Y. Kurzion, M. Fontana, N. Shareef, M. Levin, K.M.K., and A. Okamura, “A Comparative Analysis of Integrating Visual Representations with Haptic Displays,” Proc. Conf. Medicine Meets Virtual Reality 6, pp.20-26, 1998.
[19] M. Meehan, S. Razzaque, M. Whitton, and J. Brooks, F.P., “Effect of Latency on Presence in Stressful Virtual Environments,” Proc. Virtual Reality Conf., pp.141-148, Mar. 2003.
[20] J. Loviscach, “Complex Water Effects at Interactive Frame Rates,” Proc. WSCG Int'l Conf. Computer Graphics, Visualization, and Computer Vision, pp. 298-305, http://citeseer.ist.psu.eduloviscach03complex.html, 2003.
[21] M. Harris, “Flo: A Real-Time Fluid Flow Simulator Written in Cg,” http://www.markmark.netgdc2003/, 2003.
[22] M. Hopf and T. Ertl, “Accelerating Morphological Analysis with Graphics Hardware,” Proc. Workshop Vision, Modeling, and Visualization (VMV '00), pp.337-345, 2000.
[23] J.X. Chen, N. da Vitoria Lobo, C.E. Hughes, and J.M. Moshell, “Real-Time Fluid Simulation in a Dynamic Virtual Environment,” IEEE Computer Graphics and Applications, vol. 17, no. 3, pp.52-61, May 1997.
[24] X. Xu, R.K. Wang, J.B. Elder, and V.V. Tuchin, “Effect of Dextran-Induced Changes in Refractive Index and Aggregation on Optical Properties of Whole Blood,” Physics in Medicine and Biology, vol. 48, pp.1205-1221, May 2003.
[25] K. Crane, I. Llamas, and S. Tariq, “Real Time Simulation and Rendering of 3D Fluids,” GPU Gems 3, H. Nguyen, ed., chapter 30, pp.633-675, Addison Wesley, Aug. 2007.
6 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool