The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.05 - September/October (2009 vol.15)
pp: 734-746
C. Ryan Johnson , University of Tennessee, Knoxville
Jian Huang , University of Tennessee, Knoxville
ABSTRACT
Feature detection and display are the essential goals of the visualization process. Most visualization software achieves these goals by mapping properties of sampled intensity values and their derivatives to color and opacity. In this work, we propose to explicitly study the local frequency distribution of intensity values in broader neighborhoods centered around each voxel. We have found frequency distributions to contain meaningful and quantitative information that is relevant for many kinds of feature queries. Our approach allows users to enter predicate-based hypotheses about relational patterns in local distributions and render visualizations that show how neighborhoods match the predicates. Distributions are a familiar concept to nonexpert users, and we have built a simple graphical user interface for forming and testing queries interactively. The query framework readily applies to arbitrary spatial data sets and supports queries on time variant and multifield data. Users can directly query for classes of features previously inaccessible in general feature detection tools. Using several well-known data sets, we show new quantitative features that enhance our understanding of familiar visualization results.
INDEX TERMS
Volume visualization, volume rendering, multivariate data, features in volume data.
CITATION
C. Ryan Johnson, Jian Huang, "Distribution-Driven Visualization of Volume Data", IEEE Transactions on Visualization & Computer Graphics, vol.15, no. 5, pp. 734-746, September/October 2009, doi:10.1109/TVCG.2009.25
REFERENCES
[1] H. Akiba, K.-L. Ma, J.H. Chen, and E.R. Hawkes, “Visualizing Multivariate Volume Data from Turbulent Combustion Simulations,” Computing in Science and Eng., vol. 9, no. 2, pp.76-83, 2007.
[2] C.L. Bajaj, V. Pascucci, and D.R. Schikore, “The Contourspectrum,” Proc. IEEE Visualization Conf., pp.167-ff., 1997.
[3] W. Cai and G. Sakas, “Data Intermixing and Multi-Volume Rendering,” Computer Graphics Forum, vol. 18, no. 3, pp.359-368, 1999.
[4] R. Crawfis and N. Max, “Texture Splats for 3D Vector and Scalar Field Visualization,” Proc. IEEE Visualization Conf., pp.261-266, Oct. 1993.
[5] H. Doleisch, M. Gasser, and H. Hauser, “Interactive Feature Specification for Focus+Context Visualization of Complex Simulation Data.” Proc. Visualization Symp. (VISSYM '03), pp.239-248, 2003.
[6] S. Fang, T. Biddlecome, and M. Tuceryan, “Image-Based Transfer Function Design for Data Exploration in Volume Visualization,” Proc. IEEE Visualization Conf., pp.319-326, 1998.
[7] L. Gosink, J. Anderson, W. Bethel, and K. Joy, “Variable Interactions in Query-Driven Visualization,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 6, pp.1400-1407, Nov./Dec. 2007.
[8] M. Hadwiger, C. Berger, and H. Hauser, “High-Quality Two-Level Volume Rendering of Segmented Data Sets on Consumer Graphics Hardware,” Proc. IEEE Visualization Conf., pp.40, 2003.
[9] J. Hladuvka, A. König, and E. Gröller, “Salient Representation of Volume Data,” Proc. Joint Eurographics—IEEE TVCG Symp. Visualization (Data Visualization '01), D. Ebert, J.M. Favre, and R.Peikert, eds., pp.203-211, 351, 2001.
[10] H. Jänicke, A. Wiebel, G. Scheuermann, and W. Kollmann, “Multifield Visualization Using Local Statistical Complexity,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 6, pp.1384-1391, Nov./Dec. 2007.
[11] D.A. Keim and H.P. Kriegel, “VisDB: Database Exploration Using Multidimensional Visualization,” IEEE Computer Graphics and Applications, vol. 14, no. 5, pp.40-49, Sept./Oct. 1994.
[12] G. Kindlmann and J.W. Durkin, “Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering.” Proc. IEEE Symp. Visualization, pp.79-86, 1998.
[13] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Möller, “Curvature-Based Transfer Functions for Direct Volume Rendering: Methods and Applications,” Proc. IEEE Visualization Conf., pp.513-520, 2003.
[14] J. Kniss, G. Kindlmann, and C. Hansen, “Multidimensional Transfer Functions for Interactive Volume Rendering,” IEEE Trans. Visualization and Computer Graphics, vol. 8, no. 3, pp.270-285, July-Sept. 2002.
[15] J.M. Kniss, R.V. Uitert, A. Stephens, G.-S. Li, T. Tasdizen, and C. Hansen, “Statistically Quantitative Volume Visualization,” Proc. IEEE Visualization Conf., p.37, 2005.
[16] D.H. Laidlaw, K.W. Fleischer, and A.H. Barr, “Partial-Volume Bayesian Classification of Material Mixtures in MR Volume Data Using Voxel Histograms,” IEEE Trans. Medical Imaging, vol. 17, no. 1, pp.74-86, 1998.
[17] M. Levoy, “Display of Surfaces from Volume Data,” IEEE Computer Graphics and Applications, vol. 8, no. 3, pp.29-37, May/June 1988.
[18] C. Lundström, P. Ljung, and A. Ynnerman, “Local Histograms for Design of Transfer Functions in Direct Volume Rendering,” IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 6, pp.1570-1579, Nov./Dec. 2006.
[19] C. Lundström, P. Ljung, and A. Ynnerman, “Multi-Dimensional Transfer Function Design Using Sorted Histograms,” Volume Graphics, R. Machiraju and T. Möller, eds., pp.1-8, Eurographics Assoc., 2006.
[20] P. McCormick, J. Inman, J. Ahrens, C. Hansen, and G. Roth, “Scout: A Hardware-Accelerated System for Quantitatively Driven Visualization and Analysis,” Proc. IEEE Visualization Conf., pp.171-178, 2004.
[21] A. Pang, C.M. Wittenbrink, and S.K. Lodha, “Approaches to Uncertainty Visualization,” The Visual Computer, vol. 13, no. 8, pp.370-390, 1997.
[22] V. Pekar, R. Wiemker, and D. Hempel, “Fast Detection of Meaningful Isosurfaces for Volume Data Visualization,” Proc. IEEE Visualization Conf., pp.223-230, 2001.
[23] Y. Sato, C.-F. Westin, A. Bhalerao, S. Nakajima, N. Shiraga, S. Tamura, and R. Kikinis, “Tissue Classification Based on 3D Local Intensity Structure for Volume Rendering,” IEEE Trans. Visualization and Computer Graphics, vol. 6, no. 2, pp.160-180, Apr./June 2000.
[24] N. Sauber, H. Theisel, and H.-P. Seidel, “Multifield-Graphs: An Approach to Visualizing Correlations in Multifield Scalar Data,” IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 5, pp.917-924, Sept./Oct. 2006.
[25] A. Stompel, E.B. Lum, and K.-L. Ma, “Visualization of Multidimensional, Multivariate Volume Data Using Hardware-Accelerated Non-Photorealistic Rendering Techniques,” Proc. 10th Pacific Graphics Conf. Computer Graphics and Applications (PG '02), p.394, 2002.
[26] S. Tenginakai, J. Lee, and R. Machiraju, “Salient Iso-Surface Detection with Model Independent Statistical Signatures,” Proc. IEEE Visualization Conf., pp.231-238, 2001.
[27] U. Tiede, T. Schiemann, and K.H. Höhne, “High Quality Rendering of Attributed Volume Data,” Proc. IEEE Visualization Conf., pp.255-262, 1998.
[28] F.-Y. Tzeng, E. Lum, and K.-L. Ma, “A Novel Interface for Higher-Dimensional Classification of Volume Data,” Proc. IEEE Visualization Conf., pp.505-512, 2003.
[29] J. Woodring and H.-W. Shen, “Multi-Variate, Time Varying, and Comparative Visualization with Contextual Cues,” IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 5, pp.909-916, Sept./Oct. 2006.
24 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool