
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
David Mayerich, John Keyser, "Hardware Accelerated Segmentation of Complex Volumetric Filament Networks," IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 4, pp. 670681, July/August, 2009.  
BibTex  x  
@article{ 10.1109/TVCG.2008.196, author = {David Mayerich and John Keyser}, title = {Hardware Accelerated Segmentation of Complex Volumetric Filament Networks}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {15}, number = {4}, issn = {10772626}, year = {2009}, pages = {670681}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2008.196}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Hardware Accelerated Segmentation of Complex Volumetric Filament Networks IS  4 SN  10772626 SP670 EP681 EPD  670681 A1  David Mayerich, A1  John Keyser, PY  2009 KW  Microscopy KW  vessel KW  neuron KW  segmentation KW  tracking. VL  15 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] K. AlKofahi, S. Lasek, D. Szarowski, C. Pace, G. Nagy, J. Turner, and B. Roysam, “Rapid Automated ThreeDimensional Tracing of Neurons from Confocal Image Stacks,” IEEE Trans. Information Technology in Biomedicine, vol. 6, pp. 171186, 2002.
[2] P.J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, “InVivo Fiber Tractography Using DTMRI Data,” Magnetic Resonance in Medicine, vol. 44, pp. 625632, 2000.
[3] A. Dima, M. Scholz, and K. Obermayer, “Automatic Segmentation and Skeletonization of Neurons from Confocal Microscopy Images Based on the 3D Wavelet Transform,” IEEE Trans. Image Processing, vol. 11, pp. 790801, 2002.
[4] P. Doddapaneni, “Segmentation Strategies for Polymerized Volume Data Sets” PhD thesis, Dept. of Computer Science, Texas A&M Univ., 2004.
[5] H.K. Hahn, B. Preim, D. Selle, and H.O. Peitgen, “Visualization and Interaction Techniques for the Exploration of Vascular Structures,” Proc. Conf. Visualization '01, pp. 395402, 2001.
[6] M. Harris, GPU Gems 2: Mapping Computational Concepts to GPUs. Addison Wesley, Mar. 2005.
[7] X. He, E. Kischell, M. Rioult, and T.J. Holmes, “ThreeDimensional Thinning Algorithm that Peels the Outmost Layer with Application to Neuron Tracing,” J. ComputerAssisted Microscopy, vol. 10, pp. 123135, 1998.
[8] C. Kirbas and F. Quek, “A Review of Vessel Extraction Techniques and Algorithms,” ACM Computing Surveys, vol. 36, pp. 81121, 2004.
[9] D. Mayerich, L.C. Abbott, and B.H. McCormick, “KnifeEdge Scanning Microscopy for Imaging and Reconstruction of ThreeDimensional Anatomical Structures of the Mouse Brain,” J.Microscopy, vol. 231, pp. 134143, July 2008.
[10] D. Mayerich, J. Kwon, Y. Choe, L. Abbott, and J. Keyser, “Constructing High Resolution Microvascular Models,” Proc. Third Microscopic Image Analysis with Applications in Biology Workshop (MIAAB), 2008.
[11] B. McCormick, B. Busse, P. Doddapaneni, Z. Melek, and J. Keyser, “Compression, Segmentation, and Modeling of Filamentary Volumetric Data,” Proc. Ninth ACM Symp. Solid Modeling and Applications (SM '04), pp. 333338, 2004.
[12] Z. Melek, D.M. Mayerich, C. Yuksel, and J. Keyser, “Visualization of Fibrous and ThreadLike Data,” IEEE Trans. Visualization and Computer Graphics, vol. 12, pp. 11651172, 2006.
[13] K.D. Micheva and S.J. Smith, “Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits,” Neuron, vol. 55, pp. 2536, 2007.
[14] Nielsen and Museth, “Dynamic Tubular Grid: An Efficient Data Structure and Algorithms for High Resolution Level Sets,” J.Scientific Computing vol. 26, pp. 261299, 2006.
[15] N. Niki, Y. Kawata, H. Satoh, and T. Kumazaki, “3D Imaging of Blood Vessels Using XRay Rotational Angiographic System,” Proc. IEEE Nuclear Science Symp. and Medical Imaging Conf., vol. 3, pp. 18731877.
[16] J.F. O'Brien and N.F. Ezquerra, “Automated Segmentation of Coronary Vessels in Angiographic Image Sequences Utilizing Temporal, Spatial and Structural Constraints,” Proc. SPIE Visualization in Biomedical Computing, 1994.
[17] J.B. Pauley, ed., Handbook of Biological Confocal Microscopy. PlenumPress, 1995.
[18] F.H. Post, B. Vrolijk, H. Hauser, R.S. Laramee, and H. Doleisch, “The State of the Art in Flow Visualisation: Feature Extraction and Tracking,” Computer Graphics Forum, vol. 22, pp. 775792, 2003.
[19] A. Sarwal and A. Dhawan, “3D Reconstruction of Coronary Arteries from Two Views,” Proc. IEEE Conf. Eng. in Medicine and Biology, vol. 1, pp. 504505, 1994.
[20] Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller, G. Gerig, and R. Kikinis, “ThreeDimensional MultiScale Line Filter for Segmentation and Visualization of Curvilinear Structures in Medical Images,” Medical Image Analysis, vol. 2, pp. 143168, 1998.
[21] H. Schmitt, M. Grass, V. Rasche, O. Schramm, S. Haehnel, and K. Sartor, “An XRayBased Method for the Determination of the Contrast Agent Propagation in 3D Vessel Structures,” IEEE Trans. Medical Imaging, vol. 21, pp. 251262, 2002.
[22] C. Stoll, S. Gumhold, and H.P. Seidel, “Visualization with Stylized Line Primitives,” Proc. 16th Conf. Visualization '05, pp.695702, 2005.
[23] T. Tozaki, Y. Kawata, N. Niki, H. Ohmatsu, K. Eguchi, and N. Moriyama, “ThreeDimensional Analysis of Lung Areas Using Thin Slice CT Images,” Proc. SPIE, vol. 2709, pp. 111, 1996.
[24] M. Woo, J. Neider, T. Davis, and D. Shreiner, OpenGL Programming Guide, third ed. Addison Wesley, 1999.
[25] Z. Yu and C. Bajaj, “A SegmentationFree Approach for Skeletonization of GrayScale Images via Anisotropic Vector Diffusion,” Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2004.
[26] Y. Zhang, Y. Bazilevs, S. Goswami, C.L. Bajaj, and T.J.R. Hughes, “PatientSpecific Vascular Nurbs Modeling for Isogeometric Analysis of Blood Flow,” Computer Methods in Applied Mechanics and Eng., vol. 196, pp. 29432959, 2007.