
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Usman R. Alim, Alireza Entezari, Torsten Möller, "The LatticeBoltzmann Method on Optimal Sampling Lattices," IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 4, pp. 630641, July/August, 2009.  
BibTex  x  
@article{ 10.1109/TVCG.2008.201, author = {Usman R. Alim and Alireza Entezari and Torsten Möller}, title = {The LatticeBoltzmann Method on Optimal Sampling Lattices}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {15}, number = {4}, issn = {10772626}, year = {2009}, pages = {630641}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2008.201}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  The LatticeBoltzmann Method on Optimal Sampling Lattices IS  4 SN  10772626 SP630 EP641 EPD  630641 A1  Usman R. Alim, A1  Alireza Entezari, A1  Torsten Möller, PY  2009 KW  Visual simulation KW  animation KW  physically based modeling KW  BCC KW  volume modeling KW  vector field data KW  flow visualization KW  optimal regular sampling. VL  15 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] S. Albensoeder and H.C. Kuhlmann, “Accurate ThreeDimensional LidDriven Cavity Flow,” J. Computational Physics, vol. 206, no. 2, pp. 536558, 2005.
[2] B. Cabral and L.C. Leedom, “Imaging Vector Fields using Line Integral Convolution,” Proc. ACM SIGGRAPH '93, pp. 263270, 1993.
[3] J. Conway and N. Sloane, Sphere Packings, Lattices and Groups, thirded. Springer, 1999.
[4] A. Cortes and J. Miller, “Numerical Experiments with the Lid Driven Cavity Flow Problem,” Computers and Fluids, vol. 23, no. 8, pp. 10051027, 1994.
[5] C. de Boor, K. Höllig, and S. Riemenschneider, Box Splines. Springer Verlag, 1993.
[6] P. Dellar, “Incompressible Limits of Lattice Boltzmann Equations Using Multiple Relaxation Times,” J. Computational Physics, vol. 190, no. 2, pp. 351370, 2003.
[7] D. d'Humières, M. Bouzidi, and P. Lallemand, “ThirteenVelocity ThreeDimensional Lattice Boltzmann Model,” Physical Rev. E, vol. 63, no. 6, p. 66702, 2001.
[8] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and T. Nishita, “A Simple, Efficient Method for Realistic Animation of Clouds,” Proc. 27th Ann. Conf. Computer Graphics and Interactive Techniques, pp. 1928, 2000.
[9] D.E. Dudgeon and R.M. Mersereau, Multidimensional Digital Signal Processing, first ed. PrenticeHall, Inc., 1984.
[10] D. Ebert and R. Parent, “Rendering and Animation of Gaseous Phenomena by Combining Fast Volume and Scanline ABuffer Techniques,” Proc. 17th Ann. Conf. Computer Graphics and Interactive Techniques, pp. 357366, 1990.
[11] A. Entezari, “Optimal Sampling Lattices and Trivariate Box Splines,” PhD dissertation, Simon Fraser Univ., Vancouver, Canada, July 2007.
[12] A. Entezari, R. Dyer, and T. Möller, “Linear and Cubic Box Splines for the Body Centered Cubic Lattice,” Proc. IEEE Conf. Visualization, pp. 1118, Oct. 2004.
[13] A. Entezari, D. Van De Ville, and T. Möller, “Practical Box Splines for Reconstruction on the Body Centered Cubic Lattice,” IEEE Tran. Visualization and Computer Graphics, vol. 14, no. 2, pp. 313328, Mar./Apr. 2008.
[14] R. Fedkiw, J. Stam, and H.W. Jensen, “Visual Simulation of Smoke,” Proc. ACM SIGGRAPH '01, pp. 1522, 2001.
[15] N. Foster and D. Metaxas, “Modeling the Motion of a Hot, Turbulent Gas,” Proc. 24th Ann. Conf. Computer Graphics and Interactive Techniques, pp. 181188, 1997.
[16] S. Hou, Q. Zou, S. Chen, G. Doolen, and A. Cogley, “Simulation of Cavity Flow by the Lattice Boltzmann Method,” J. Computational Physics, vol. 118, no. 2, pp. 329347, 1995.
[17] M. Junk, A. Klar, and L. Luo, “Asymptotic Analysis of the Lattice Boltzmann Equation,” J. Computational Physics, vol. 210, no. 2, pp.676704, 2005.
[18] M. Junk and Z. Yang, “Onepoint Boundary Condition for the Lattice Boltzmann Method,” Physical Rev. E, vol. 72, no. 6, p.66701, 2005.
[19] H. Ku, R. Hirsh, and T. Taylor, “A Pseudospectral Method for Solution of the ThreeDimensional Incompressible NavierStokes Equations,” J. Computational Physics, vol. 70, no. 2, pp. 439462, 1987.
[20] R. Mei, D. Yu, and L. Luo, “Lattice Boltzmann Method for 3D Flows with Curved Boundary,” J. Computational Physics, vol. 161, no. 2, pp. 680699, 2000.
[21] T. Meng, B. Smith, A. Entezari, A.E. Kirkpatrick, D. Weiskopf, L. Kalantari, and T. Möller, “On Visual Quality of Optimal 3D Sampling and Reconstruction,” Proc. Graphics Interface Conf. '07, pp.265272, May 2007.
[22] K. Morton and D. Mayers, Numerical Solution of Partial Differential Equations. Cambridge Univ. Press, 1994.
[23] D.P. Petersen and D. Middleton, “Sampling and Reconstruction of WaveNumberLimited Functions in + NDimensional Euclidean Spaces,” Information and Control, vol. 5, no. 4, pp. 279323, Dec. 1962.
[24] M. Pharr and G. Humphreys, Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann, 2004.
[25] Y. Qian, D. D'Humières, and P. Lallemand, “Lattice BGK Models for NavierStokes Equation,” Europhysics Letters, vol. 17, 479, 1992.
[26] F. Qiu, Y. Zhao, Z. Fan, X. Wei, H. Lorenz, J. Wang, S. YoakumStover, A. Kaufman, and K. Mueller, “Dispersion Simulation and Visualization for Urban Security,” Proc. IEEE Conf. Visualization '04, pp. 553560, 2004.
[27] D. Stalling and H.C. Hege, “Fast and Resolution Independent Line Integral Convolution,” Proc. ACM SIGGRAPH '95, pp.249256, 1995.
[28] J. Stam, “Stable Fluids,” Proc. ACM SIGGRAPH '99, pp. 121128, 1999.
[29] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford Univ. Press, 2001.
[30] T. Theußl, T. Möller, and E. Gröller, “Optimal Regular Volume Sampling,” Proc. IEEE Visualization Conf. '01, pp. 9198, Oct. 2001.
[31] D. Van De Ville, T. Blu, M. Unser, W. Philips, I. Lemahieu, and R. Van de Walle, “HexSplines: A Novel Spline Family for Hexagonal Lattices,” IEEE Trans. Image Processing, vol. 13, no. 6, pp. 758772, June 2004.
[32] X. Wei, W. Li, K. Mueller, and A. Kaufman, “Simulating Fire with Texture Splats,” Proc. IEEE Visualization Conf. '02, pp. 227235, 2002.
[33] X. Wei, W. Li, K. Mueller, and A. Kaufman, “The LatticeBoltzmann Method for Simulating Gaseous Phenomena,” IEEE Trans. Visualization and Computer Graphics, vol. 10, no. 2, pp. 164176, Mar./Apr. 2004.
[34] X. Wei, Y. Zhao, Z. Fan, W. Li, S. YoakumStover, and A. Kaufman, “Blowing in the Wind,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp. 7585, 2003.
[35] D.A. WolfGladrow, LatticeGas Cellular Automata and Lattice Boltzmann Models: An Introduction. SpringerVerlag Telos, 2000.