
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Giuseppe Patanè, Michela Spagnuolo, Bianca Falcidieno, "A Minimal Contouring Approach to the Computation of the Reeb Graph," IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 4, pp. 583595, July/August, 2009.  
BibTex  x  
@article{ 10.1109/TVCG.2009.22, author = {Giuseppe Patanè and Michela Spagnuolo and Bianca Falcidieno}, title = {A Minimal Contouring Approach to the Computation of the Reeb Graph}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {15}, number = {4}, issn = {10772626}, year = {2009}, pages = {583595}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.22}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  A Minimal Contouring Approach to the Computation of the Reeb Graph IS  4 SN  10772626 SP583 EP595 EPD  583595 A1  Giuseppe Patanè, A1  Michela Spagnuolo, A1  Bianca Falcidieno, PY  2009 KW  Reeb graph KW  topological graph KW  Morse theory KW  computational topology KW  geometric algorithms KW  hierarchical segmentations KW  shape analysis and abstraction. VL  15 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] M. Attene, S. Biasotti, and M. Spagnuolo, “Shape Understanding by ContourDriven Retiling,” The Visual Computer, vol. 19, nos.2/3, pp.127138, 2003.
[2] T. Banchoff, “Critical Points and Curvature for Embedded Polyhedra,” J. Differential Geometry, vol. 1, pp.245256, 1967.
[3] M. Belkin and P. Niyogi, “Laplacian Eigenmaps for Dimensionality Reduction and Data Representation,” Neural Computations, vol. 15, no. 6, pp.13731396, 2003.
[4] S. Biasotti, B. Falcidieno, L. De Floriani, P. Frosini, D. Giorgi, C. Landi, L. Papaleo, and M. Spagnuolo, “Describing Shapes by GeometricTopological Properties of Real Functions,” ACM Computing Surveys, vol. 40, no. 4.
[5] S. Biasotti, B. Falcidieno, and M. Spagnuolo, “Surface Shape Understanding Based on Extended Reeb Graphss,” Topological Data Structures for Surfaces: An Introduction for Geographical Information Science, pp.87103, 2004.
[6] S. Biasotti, S. Marini, M. Mortara, G. Patanè, M. Spagnuolo, and B. Falcidieno , “3D Shape Matching through Topological Structures,” Discrete Gemetry for Computer Imagery, pp.194203, 2003.
[7] S. Biasotti, S. Marini, M. Spagnuolo, and B. Falcidieno, “SubPart Correspondence by Structural Descriptors of 3D Shapes,” ComputerAided Design, vol. 38, no. 9, pp.10021019, 2006.
[8] P.T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci, “A Topological Hierarchy for Functions on Triangulated Surfaces,” IEEE Trans. Visualization and Computer Graphics, vol. 10, no. 4, pp.385396, July/Aug. 2004.
[9] H. Carr, J. Snoeyink, and U. Axen, “Computing Contour Trees in All Dimensions,” Computational Geometry Theory and Applications, vol. 24, no. 2, pp.7594, 2003.
[10] H. Carr, J. Snoeyink , and M. van de Panne, “Simplifying Flexible Isosurfaces Using Local Geometric Measures,” Proc. IEEE Visualization Conf., pp.497504, 2004.
[11] Y.J. Chiang, T. Lenz, X. Lu, and G. Rote, “Simple and Optimal OutputSensitive Construction of Contour Trees Using Monotone Paths,” Computational Geometry Theory and Applications, vol. 30, no. 2, pp.165195, 2005.
[12] K. ColeMcLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, “Loops in Reeb Graphs of 2Manifolds,” Discrete Computational Geometry, vol. 32, no. 2, pp.231244, 2004.
[13] S. Dong , P.T. Bremer , M. Garland, V. Pascucci, and J.C. Hart, “Spectral Surface Quadrangulation,” Proc. ACM SIGGRAPH '06, pp.10571066, 2006.
[14] S. Dong, S. Kircher, and M. Garland, “Harmonic Functions for Quadrilateral Remeshing of Arbitrary Manifolds,” Computer Aided Geometric Design, vol. 22, no. 5, pp.392423, 2005.
[15] H. Edelsbrunner, J. Harer, and A. Zomorodian, “Hierarchical Morse Complexes for Piecewise Linear 2Manifolds,” Proc. ACM Symp. Computational Geometry, pp.7079, 2001.
[16] A. Elad and R. Kimmel, “On Bending Invariant Signatures for Surfaces,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp.12851295, Oct. 2003.
[17] M.S. Floater, “Mean Value Coordinates,” Computer Aided Geometric Design, vol. 20, no. 1, pp.1927, 2003.
[18] A. Fomenko and T.L. Kunii, Topological Modelling for Visualization. Springer Verlag, 1997.
[19] R. Gal and D. CohenOr, “Salient Geometric Features for Partial Shape Matching and Similarity,” ACM Trans. Graphics, vol. 25, no. 1, pp.130150, 2006.
[20] R. Gal, A. Shamir, and D. CohenOr, “PoseOblivious Shape Signature,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 2, pp.261271, Mar./Apr. 2007.
[21] X. Gu and S.T. Yau, “Global Conformal Surface Parameterization,” Proc. Symp. Geometry Processing, pp.127137, 2003.
[22] M. Hilaga, Y. Shinagawa, T. Kohmura, and T.L. Kunii, “Topology Matching for Fully Automatic Similarity Estimation of 3D Shapes,” Proc. ACM SIGGRAPH '01, pp.203212, 2001.
[23] E. Kartasheva, “Reduction of hGenus Polyhedrons Topology,” Int'l J. Shape Modeling, vol. 5, no. 2, pp.179194, 1999.
[24] F. Lazarus and A. Verroust , “Level Set Diagrams of Polyhedral Objects,” Proc. Symp. Solid Modeling and Applications, pp.130140, 1999.
[25] J.P. Lewis , M. Cordner, and N. Fong, “Pose Space Deformation: A Unified Approach to Shape Interpolation and SkeletonDriven Deformation,” Proc. ACM SIGGRAPH '00, pp.165172, 2000.
[26] Y.S. Liu, M. Liu, D. Kihara, and K. Ramani, “Salient Critical Points for Meshes,” Proc. Symp. Solid and Physical Modeling, pp.277282, 2007.
[27] J. Milnor, Morse Theory. Princeton Univ. Press, 1963.
[28] M. Mortara and G. Patanè, “ShapeCovering for Skeleton Extraction,” Int'l J. Shape Modelling, vol. 8, no. 2, pp.245252, 2002.
[29] M. Mortara, G. Patanè, M. Spagnuolo, B. Falcidieno, and J. Rossignac, “Blowing Bubbles for MultiScale Analysis and Decomposition of Triangle Meshes,” Algorithmica, vol. 38, no. 1, pp.227248, 2004.
[30] X. Ni, M. Garland, and J.C. Hart, “Fair Morse Functions for Extracting the Topological Structure of a Surface Mesh,” Proc. ACM SIGGRAPH '04, pp.613622, 2004.
[31] V. Pascucci and K. ColeMcLaughlin, “Parallel Computation of the Topology of Level Sets,” Algorithmica, vol. 38, no. 1, pp.249268, 2003.
[32] V. Pascucci, K. ColeMcLaughlin, and G. Scorzelli, “MultiResolution Computation and Presentation of Contour Trees,” Proc. IASTED Conf. Visualization, Imaging, and Image Processing, pp.452290, 2004.
[33] V. Pascucci , G. Scorzelli, P.T. Bremer, and A. Mascarenhas, “Robust OnLine Computation of Reeb Graphs: Simplicity and Speed,” Proc. ACM SIGGRAPH '07, pp.58.158.9, 2007.
[34] G. Patanè, M. Spagnuolo, and B. Falcidieno, “ParaGraph: GraphBased Parameterization of Triangle Meshes with Arbitrary Genus,” Computer Graphics Forum, vol. 23, no. 4, pp.783797, 2004.
[35] G. Patanè, M. Spagnuolo, and B. Falcidieno, “Families of CutGraphs for Bordered Meshes with Arbitrary Genus,” Graphical Models, vol. 69, no. 2, pp.119138, 2007.
[36] G. Patanè, M. Spagnuolo, and B. Falcidieno, “Topological Generators and CutGraphs of Arbitrary Triangle Meshes,” Proc. Conf. Shape Modeling and Applications, pp.113122, 2007.
[37] G. Patanè, M. Spagnuolo, and B. Falcidieno, “Reeb Graph Computation Based on a Minimal Contouring,” Proc. Shape Conf. Modeling and Applications, pp.7382, 2008.
[38] Z. Qian.yi, T. Ju, and H. Shimin, “Topology Repair of Solid Models Using Skeletons,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 4, pp.657685, July/Aug. 2007.
[39] G. Reeb, “Sur Les Points Singuliers D'une Forme de Pfaff Completement Integrable Ou D'une Fonction Numerique,” Comptes Rendus de l'Académie des Sciences, pp.847849, 1946.
[40] M. Reuter, F.E. Wolter, and N. Peinecke, “LaplaceBeltrami Spectra as ShapeDNA of Surfaces and Solids,” ComputerAided Design, vol. 38, no. 4, pp.342366, 2006.
[41] Y. Shinagawa, T.L. Kunii, and Y.L. Kergosian, “Surface Coding Based on Morse Theory,” IEEE Computer Graphics and Applications, vol. 11, pp.6678, 1991.
[42] D. Steiner and A. Fischer, “Cutting 3D Freeform Objects with Genusn into Single Boundary Surfaces Using Topological Graphs,” Proc. Symp. Solid Modeling and Applications, pp.336343, 2002.
[43] D. Steiner and A. Fischer, “Finding and Defining the Generators of Genusn Objects for Constructing Topological and Cut Graphs,” The Visual Computer, vol. 20, no. 4, pp.266278, 2004.
[44] D. Steiner and A. Fischer, “Planar Parameterization for Closed Manifolds Genus1 Meshes,” Proc. ACM Symp. Solid Modeling and Applications, pp.8392, 2004.
[45] S. Takahashi , Y. Shinagawa, and T.L. Kunii, “A FeatureBased Approach for Smooth Surfaces,” Proc. Symp. Solid Modeling and Applications, pp.97110, 1997.
[46] B. Vallet and B. Levy, “Spectral Geometry Processing with Manifold Harmonics,” Computer Graphics Forum, vol. 27, no. 2, 2008.
[47] M. Van Kreveld, R. Van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore, “Contour Trees and Small Seed Sets for Isosurface Traversal,” Proc. Symp. Computational Geometry, pp.212220, 1997.
[48] G.H. Weber and G. Scheuermann, “TopologyBased Transfer Function Design,” Proc. IASTED Int'l Conf. Visualization, Imaging, and Image Processing, pp.527532, 2002.
[49] O. Weber , O. Sorkine, Y. Lipman, and C. Gotsman, “ContextAware Skeletal Shape Deformation,” Computer Graphics Forum, vol. 26, no. 3, 2007.
[50] Z. Wood, H. Hoppe, M. Desbrun, and P. Schröder, “Removing Excess Topology from Isosurfaces,” ACM Trans. Graphics, vol. 23, no. 2, pp.190208, 2004.
[51] H.B. Yan, S. Hu, R.R. Martin, and Y.L. Yang, “Shape Deformation Using a Skeleton to Drive Simplex Transformations,” IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 3, pp.693706, May/June 2008.
[52] S. Yoshizawa, A. Belyaev, and H.P. Seidel, “SkeletonBased Variational Mesh Deformations,” Computer Graphics Forum, vol. 26, no. 3, pp.255264, 2007.
[53] T. Zaharia and F.J. Preteux, “3DShapeBased Retrieval within the MPEG7 Framework,” Nonlinear Image Processing and Pattern Analysis, vol. 4304, pp.133145, 2001.
[54] E. Zhang, K. Mischaikow, and G. Turk, “FeatureBased Surface Parameterization and Texture Mapping,” ACM Trans. Graphics, vol. 24, no. 1, pp.127, 2005.