The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.04 - July/August (2009 vol.15)
pp: 583-595
Giuseppe Patanè , Istituto di Matematica Applicata e Tecnologie Inormatiche, Consiglio Nazionale delle Ricerche, Genova
Michela Spagnuolo , Istituto di Matematica Applicata e Tecnologie Inormatiche, Consiglio Nazionale delle Ricerche, Genova
Bianca Falcidieno , Istituto di Matematica Applicata e Tecnologie Inormatiche, Consiglio Nazionale delle Ricerche, Genova
ABSTRACT
Given a manifold surface {\cal M} and a continuous scalar function f:{\cal M}\rightarrow {\hbox{\rlap{I}\kern 2.0pt{\hbox{R}}}}, the Reeb graph of ({\cal M},f) is a widely used high-level descriptor of {\cal M} and its usefulness has been demonstrated for a variety of applications, which range from shape parameterization and abstraction to deformation and comparison. In this context, we propose a novel contouring algorithm for the construction of a discrete Reeb graph with a minimal number of nodes, which correspond to the critical points of f (i.e., minima, maxima, and saddle points) and its level sets passing through the saddle points. In this way, we do not need to sample, sweep, or increasingly sort the f-values. Since most of the computation uses only local information on the mesh connectivity, equipped with the f-values at the surface vertices, the proposed approach is insensitive to noise and requires a small-memory footprint and temporary data structures. Furthermore, we maintain the parametric nature of the Reeb graph with respect to the input scalar function and we efficiently extract the Reeb graph of time-varying maps. Indicating with n and s the number of vertices of {\cal M} and saddle points of f, the overall computational cost O(sn) is competitive with respect to the O(n\,\log \,n) cost of previous work. This cost becomes optimal if {\cal M} is highly sampled or s\le \log n, as it happens for Laplacian eigenfunctions, harmonic maps, and one-forms.
INDEX TERMS
Reeb graph, topological graph, Morse theory, computational topology, geometric algorithms, hierarchical segmentations, shape analysis and abstraction.
CITATION
Giuseppe Patanè, Michela Spagnuolo, Bianca Falcidieno, "A Minimal Contouring Approach to the Computation of the Reeb Graph", IEEE Transactions on Visualization & Computer Graphics, vol.15, no. 4, pp. 583-595, July/August 2009, doi:10.1109/TVCG.2009.22
REFERENCES
[1] M. Attene, S. Biasotti, and M. Spagnuolo, “Shape Understanding by Contour-Driven Retiling,” The Visual Computer, vol. 19, nos.2/3, pp.127-138, 2003.
[2] T. Banchoff, “Critical Points and Curvature for Embedded Polyhedra,” J. Differential Geometry, vol. 1, pp.245-256, 1967.
[3] M. Belkin and P. Niyogi, “Laplacian Eigenmaps for Dimensionality Reduction and Data Representation,” Neural Computations, vol. 15, no. 6, pp.1373-1396, 2003.
[4] S. Biasotti, B. Falcidieno, L. De Floriani, P. Frosini, D. Giorgi, C. Landi, L. Papaleo, and M. Spagnuolo, “Describing Shapes by Geometric-Topological Properties of Real Functions,” ACM Computing Surveys, vol. 40, no. 4.
[5] S. Biasotti, B. Falcidieno, and M. Spagnuolo, “Surface Shape Understanding Based on Extended Reeb Graphss,” Topological Data Structures for Surfaces: An Introduction for Geographical Information Science, pp.87-103, 2004.
[6] S. Biasotti, S. Marini, M. Mortara, G. Patanè, M. Spagnuolo, and B. Falcidieno , “3D Shape Matching through Topological Structures,” Discrete Gemetry for Computer Imagery, pp.194-203, 2003.
[7] S. Biasotti, S. Marini, M. Spagnuolo, and B. Falcidieno, “Sub-Part Correspondence by Structural Descriptors of 3D Shapes,” Computer-Aided Design, vol. 38, no. 9, pp.1002-1019, 2006.
[8] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci, “A Topological Hierarchy for Functions on Triangulated Surfaces,” IEEE Trans. Visualization and Computer Graphics, vol. 10, no. 4, pp.385-396, July/Aug. 2004.
[9] H. Carr, J. Snoeyink, and U. Axen, “Computing Contour Trees in All Dimensions,” Computational Geometry Theory and Applications, vol. 24, no. 2, pp.75-94, 2003.
[10] H. Carr, J. Snoeyink , and M. van de Panne, “Simplifying Flexible Isosurfaces Using Local Geometric Measures,” Proc. IEEE Visualization Conf., pp.497-504, 2004.
[11] Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote, “Simple and Optimal Output-Sensitive Construction of Contour Trees Using Monotone Paths,” Computational Geometry Theory and Applications, vol. 30, no. 2, pp.165-195, 2005.
[12] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, “Loops in Reeb Graphs of 2-Manifolds,” Discrete Computational Geometry, vol. 32, no. 2, pp.231-244, 2004.
[13] S. Dong , P.-T. Bremer , M. Garland, V. Pascucci, and J.C. Hart, “Spectral Surface Quadrangulation,” Proc. ACM SIGGRAPH '06, pp.1057-1066, 2006.
[14] S. Dong, S. Kircher, and M. Garland, “Harmonic Functions for Quadrilateral Remeshing of Arbitrary Manifolds,” Computer Aided Geometric Design, vol. 22, no. 5, pp.392-423, 2005.
[15] H. Edelsbrunner, J. Harer, and A. Zomorodian, “Hierarchical Morse Complexes for Piecewise Linear 2-Manifolds,” Proc. ACM Symp. Computational Geometry, pp.70-79, 2001.
[16] A. Elad and R. Kimmel, “On Bending Invariant Signatures for Surfaces,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp.1285-1295, Oct. 2003.
[17] M.S. Floater, “Mean Value Coordinates,” Computer Aided Geometric Design, vol. 20, no. 1, pp.19-27, 2003.
[18] A. Fomenko and T.L. Kunii, Topological Modelling for Visualization. Springer Verlag, 1997.
[19] R. Gal and D. Cohen-Or, “Salient Geometric Features for Partial Shape Matching and Similarity,” ACM Trans. Graphics, vol. 25, no. 1, pp.130-150, 2006.
[20] R. Gal, A. Shamir, and D. Cohen-Or, “Pose-Oblivious Shape Signature,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 2, pp.261-271, Mar./Apr. 2007.
[21] X. Gu and S.-T. Yau, “Global Conformal Surface Parameterization,” Proc. Symp. Geometry Processing, pp.127-137, 2003.
[22] M. Hilaga, Y. Shinagawa, T. Kohmura, and T.L. Kunii, “Topology Matching for Fully Automatic Similarity Estimation of 3D Shapes,” Proc. ACM SIGGRAPH '01, pp.203-212, 2001.
[23] E. Kartasheva, “Reduction of h-Genus Polyhedrons Topology,” Int'l J. Shape Modeling, vol. 5, no. 2, pp.179-194, 1999.
[24] F. Lazarus and A. Verroust , “Level Set Diagrams of Polyhedral Objects,” Proc. Symp. Solid Modeling and Applications, pp.130-140, 1999.
[25] J.P. Lewis , M. Cordner, and N. Fong, “Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-Driven Deformation,” Proc. ACM SIGGRAPH '00, pp.165-172, 2000.
[26] Y.-S. Liu, M. Liu, D. Kihara, and K. Ramani, “Salient Critical Points for Meshes,” Proc. Symp. Solid and Physical Modeling, pp.277-282, 2007.
[27] J. Milnor, Morse Theory. Princeton Univ. Press, 1963.
[28] M. Mortara and G. Patanè, “Shape-Covering for Skeleton Extraction,” Int'l J. Shape Modelling, vol. 8, no. 2, pp.245-252, 2002.
[29] M. Mortara, G. Patanè, M. Spagnuolo, B. Falcidieno, and J. Rossignac, “Blowing Bubbles for Multi-Scale Analysis and Decomposition of Triangle Meshes,” Algorithmica, vol. 38, no. 1, pp.227-248, 2004.
[30] X. Ni, M. Garland, and J.C. Hart, “Fair Morse Functions for Extracting the Topological Structure of a Surface Mesh,” Proc. ACM SIGGRAPH '04, pp.613-622, 2004.
[31] V. Pascucci and K. Cole-McLaughlin, “Parallel Computation of the Topology of Level Sets,” Algorithmica, vol. 38, no. 1, pp.249-268, 2003.
[32] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli, “Multi-Resolution Computation and Presentation of Contour Trees,” Proc. IASTED Conf. Visualization, Imaging, and Image Processing, pp.452-290, 2004.
[33] V. Pascucci , G. Scorzelli, P.-T. Bremer, and A. Mascarenhas, “Robust On-Line Computation of Reeb Graphs: Simplicity and Speed,” Proc. ACM SIGGRAPH '07, pp.58.1-58.9, 2007.
[34] G. Patanè, M. Spagnuolo, and B. Falcidieno, “Para-Graph: Graph-Based Parameterization of Triangle Meshes with Arbitrary Genus,” Computer Graphics Forum, vol. 23, no. 4, pp.783-797, 2004.
[35] G. Patanè, M. Spagnuolo, and B. Falcidieno, “Families of Cut-Graphs for Bordered Meshes with Arbitrary Genus,” Graphical Models, vol. 69, no. 2, pp.119-138, 2007.
[36] G. Patanè, M. Spagnuolo, and B. Falcidieno, “Topological Generators and Cut-Graphs of Arbitrary Triangle Meshes,” Proc. Conf. Shape Modeling and Applications, pp.113-122, 2007.
[37] G. Patanè, M. Spagnuolo, and B. Falcidieno, “Reeb Graph Computation Based on a Minimal Contouring,” Proc. Shape Conf. Modeling and Applications, pp.73-82, 2008.
[38] Z. Qian.yi, T. Ju, and H. Shimin, “Topology Repair of Solid Models Using Skeletons,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 4, pp.657-685, July/Aug. 2007.
[39] G. Reeb, “Sur Les Points Singuliers D'une Forme de Pfaff Completement Integrable Ou D'une Fonction Numerique,” Comptes Rendus de l'Académie des Sciences, pp.847-849, 1946.
[40] M. Reuter, F.-E. Wolter, and N. Peinecke, “Laplace-Beltrami Spectra as Shape-DNA of Surfaces and Solids,” Computer-Aided Design, vol. 38, no. 4, pp.342-366, 2006.
[41] Y. Shinagawa, T.L. Kunii, and Y.L. Kergosian, “Surface Coding Based on Morse Theory,” IEEE Computer Graphics and Applications, vol. 11, pp.66-78, 1991.
[42] D. Steiner and A. Fischer, “Cutting 3D Freeform Objects with Genus-n into Single Boundary Surfaces Using Topological Graphs,” Proc. Symp. Solid Modeling and Applications, pp.336-343, 2002.
[43] D. Steiner and A. Fischer, “Finding and Defining the Generators of Genus-n Objects for Constructing Topological and Cut Graphs,” The Visual Computer, vol. 20, no. 4, pp.266-278, 2004.
[44] D. Steiner and A. Fischer, “Planar Parameterization for Closed Manifolds Genus-1 Meshes,” Proc. ACM Symp. Solid Modeling and Applications, pp.83-92, 2004.
[45] S. Takahashi , Y. Shinagawa, and T.L. Kunii, “A Feature-Based Approach for Smooth Surfaces,” Proc. Symp. Solid Modeling and Applications, pp.97-110, 1997.
[46] B. Vallet and B. Levy, “Spectral Geometry Processing with Manifold Harmonics,” Computer Graphics Forum, vol. 27, no. 2, 2008.
[47] M. Van Kreveld, R. Van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore, “Contour Trees and Small Seed Sets for Isosurface Traversal,” Proc. Symp. Computational Geometry, pp.212-220, 1997.
[48] G.H. Weber and G. Scheuermann, “Topology-Based Transfer Function Design,” Proc. IASTED Int'l Conf. Visualization, Imaging, and Image Processing, pp.527-532, 2002.
[49] O. Weber , O. Sorkine, Y. Lipman, and C. Gotsman, “Context-Aware Skeletal Shape Deformation,” Computer Graphics Forum, vol. 26, no. 3, 2007.
[50] Z. Wood, H. Hoppe, M. Desbrun, and P. Schröder, “Removing Excess Topology from Isosurfaces,” ACM Trans. Graphics, vol. 23, no. 2, pp.190-208, 2004.
[51] H.-B. Yan, S. Hu, R.R. Martin, and Y.-L. Yang, “Shape Deformation Using a Skeleton to Drive Simplex Transformations,” IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 3, pp.693-706, May/June 2008.
[52] S. Yoshizawa, A. Belyaev, and H.-P. Seidel, “Skeleton-Based Variational Mesh Deformations,” Computer Graphics Forum, vol. 26, no. 3, pp.255-264, 2007.
[53] T. Zaharia and F.J. Preteux, “3D-Shape-Based Retrieval within the MPEG-7 Framework,” Nonlinear Image Processing and Pattern Analysis, vol. 4304, pp.133-145, 2001.
[54] E. Zhang, K. Mischaikow, and G. Turk, “Feature-Based Surface Parameterization and Texture Mapping,” ACM Trans. Graphics, vol. 24, no. 1, pp.1-27, 2005.
40 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool