
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Xin Li, Xianfeng Gu, Hong Qin, "Surface Mapping Using Consistent Pants Decomposition," IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 4, pp. 558571, July/August, 2009.  
BibTex  x  
@article{ 10.1109/TVCG.2008.200, author = {Xin Li and Xianfeng Gu and Hong Qin}, title = {Surface Mapping Using Consistent Pants Decomposition}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {15}, number = {4}, issn = {10772626}, year = {2009}, pages = {558571}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2008.200}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Surface Mapping Using Consistent Pants Decomposition IS  4 SN  10772626 SP558 EP571 EPD  558571 A1  Xin Li, A1  Xianfeng Gu, A1  Hong Qin, PY  2009 KW  Mathematics of computing KW  computer graphics KW  computational geometry and object modeling KW  geometric algorithms KW  languages KW  and systems. VL  15 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] X. Li, Y. Bao, X. Guo, M. Jin, X. Gu, and H. Qin, “Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology,” IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 4, pp. 805819, July/Aug. 2008.
[2] D. DeCarlo and J. Gallier, “Topological Evolution of Surfaces,” Proc. Graphics Interface, pp. 194203, 1996.
[3] T. Kanai, H. Suzuki, and F. Kimura, “ThreeDimensional Geometric Metamorphosis Based on Harmonic Maps,” The Visual Computer, vol. 14, no. 4, pp. 166176, 1998.
[4] A. Asirvatham, E. Praun, and H. Hoppe, “Consistent Spherical Parameterization,” Proc. Int'l Conf. Computational Science, vol. 2, pp.265272, 2005.
[5] V. Kraevoy and A. Sheffer, “CrossParameterization and Compatible Remeshing of 3D Models,” ACM Trans. Graphics, vol. 23, no. 3, pp. 861869, 2004.
[6] J. Schreiner, A. Asirvatham, E. Praun, and H. Hoppe, “InterSurface Mapping,” Proc. ACM SIGGRAPH '04, vol. 23, no. 3, pp.870877, 2004.
[7] A. Gregory, A. State, M. Lin, D. Manocha, and M. Livingston, “FeatureBased Surface Decomposition for Correspondence and Morphing Between Polyhedra,” Proc. Computer Animation Conf., pp. 6471, 1998.
[8] M.S. Floater and K. Hormann, “Surface Parameterization: A Tutorial and Survey,” Advances in Multiresolution for Geometric Modelling, series mathematics and visualization, pp. 157186, 2005.
[9] A. Sheffer, E. Praun, and K. Rose, “Mesh Parameterization Methods and Their Applications,” Foundations and Trends in Computer Graphics and Vision, vol. 2, no. 2, pp. 105171, 2006.
[10] J. Kent, W. Carlson, and R. Parent, “Shape Transformation for Polyhedral Objects,” Proc. ACM SIGGRAPH '92, pp. 4754, 1992.
[11] M. Alexa, “Merging Polyhedral Shapes with Scattered Features,” Proc. Int'l Conf. Shape Modeling and Applications, pp. 202210, 1999.
[12] M. Zöckler, D. Stalling, and H.C. Hege, “Fast and Intuitive Generation of Geometric Shape Transitions,” Visual Computer, vol. 16, no. 5, pp. 241253, 2000.
[13] F. Lazarus and A. Verroust, “ThreeDimensional Metamorphosis: A Survey,” The Visual Computer, vol. 14, nos. 8/9, pp. 373389, 1998.
[14] A. Lee, D. Dobkin, W. Sweldens, and P. Schröder, “Multiresolution Mesh Morphing,” Proc. ACM SIGGRAPH '99, pp. 343350, 1999.
[15] E. Praun, W. Sweldens, and P. Schröder, “Consistent Mesh Parameterizations,” Proc. ACM SIGGRAPH '01, pp. 179184, 2001.
[16] C. Carner, M. Jin, GuX., and H. Qin, “TopologyDriven Surface Mappings with Robust Feature Alignment,” Proc. IEEE Visualization Conf., pp. 543550, 2005.
[17] X. Gu and S.T. Yau, “Global Conformal Surface Parameterization,” Proc. Symp. Geometry Processing, pp. 127137, 2003.
[18] J. Erickson and K. Whittlesey, “Greedy Optimal Homotopy and Homology Generators,” Proc. ACMSIAM Symp. Discrete Algorithms, pp.10381046, 2005.
[19] T.K. Dey, K. Li, and J. Sun, “On Computing Handle and Tunnel Loops,” Proc. Int'l Conf. Cyberworlds, pp. 357366, 2007.
[20] A. Hatcher, P. Lochak, and L. Schneps, “On the Teichmüller Tower of Mapping Class Groups,” J. die Reine und Angewandte Math., vol. 521, pp. 124, 2000.
[21] E. Verdière and F. Lazarus, “Optimal Pants Decompositions and Shortest Homotopic Cycles on an Orientable Surface,” J. ACM, vol. 54, no. 4, p. 18, 2007.
[22] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle, “Multiresolution Analysis of Arbitrary Meshes,” Proc. ACM SIGGRAPH '95, pp. 173182, 1995.
[23] M.S. Floater, “Mean Value Coordinates.” Computer Aided Geometric Design, vol. 20, no. 1, pp. 1927, 2003.
[24] J. Bondy and U. Murty, Graph Theory with Applications. North Holland, 1982.
[25] A. Yershova and S. Lavalle, “Deterministic Sampling Methods for Spheres and SO(3),” Proc. IEEE Int'l Conf. Robotics and Automation, pp. 39743980, 2004.
[26] D. Badouel, An Efficient RyPolygon Intersection, pp. 390393. Academic Press Professional, Inc., 1990.
[27] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 2001.
[28] X. Gu, Y. Wang, T. Chan, P. Thompson, and S.T. Yau, “Genus Zero Surface Conformal Mapping and Its Application to Brain Surface Mapping,” IEEE Trans. Medical Imaging, vol. 23, no. 8, pp. 949958, 2004.
[29] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal, S. Rusinkiewicz, and D. Dobkin, “Modeling by Example,” ACM Trans. Graphics, vol. 23, no. 3, pp. 652663, 2004.
[30] X. Li, X. Guo, H. Wang, Y. He, X. Gu, and H. Qin, “Harmonic Volumetric Mapping for Solid Modeling Applications,” Proc. ACM Symp. Solid and Physical Modeling, pp. 109120, 2007.