
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Miao Jin, Wei Zeng, Feng Luo, Xianfeng Gu, "Computing Teichmüller Shape Space," IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 3, pp. 504517, May/June, 2009.  
BibTex  x  
@article{ 10.1109/TVCG.2008.103, author = {Miao Jin and Wei Zeng and Feng Luo and Xianfeng Gu}, title = {Computing Teichmüller Shape Space}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {15}, number = {3}, issn = {10772626}, year = {2009}, pages = {504517}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2008.103}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Computing Teichmüller Shape Space IS  3 SN  10772626 SP504 EP517 EPD  504517 A1  Miao Jin, A1  Wei Zeng, A1  Feng Luo, A1  Xianfeng Gu, PY  2009 KW  Curve KW  surface KW  solid KW  and object representations KW  Geometric algorithms KW  languages KW  and systems VL  15 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] W.P. Thurston, Geometry and Topology of ThreeManifolds, Princeton lecture notes, 1976.
[2] M. Seppala and T. Sorvali, Geometry of Riemann Surfaces and Teichmüller Spaces, NorthHolland Math. Studies, 1992.
[3] X. Gu and S.T. Yau, “Global Conformal Parameterization,” Proc. Symp. Geometry Processing (SGP '03), pp. 127137, 2003.
[4] X. Gu and B.C. Vemuri, “Matching 3D Shapes Using 2D Conformal Representations,” Proc. Seventh Int'l Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI '04), pp.771780, 2004.
[5] Y. Wang, M. Chiang, and P.M. Thompson, “Mutual InformationBased 3D Surface Matching with Applications to Face Recognition and Brain Mapping,” Proc. 10th IEEE Int'l Conf. Computer Vision (ICCV '05), vol. 1, pp. 527534, 2005.
[6] S. Wang, Y. Wang, M. Jin, X. Gu, and D. Samaras, “3D Surface Matching and Recognition Using Conformal Geometry,” Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR '06), pp.24532460, 2006.
[7] M. Jin, F. Luo, S.T. Yau, and X. Gu, “Computing Geodesic Spectra of Surfaces,” Proc. ACM Symp. Solid and Physical Modeling (SPM '07), pp. 387393, 2007.
[8] X. Gu and S.T. Yau, “Surface Classification Using Conformal Structures,” Proc. Ninth IEEE Int'l Conf. Computer Vision (ICCV '03), pp. 701708, 2003.
[9] F. Luo, “Geodesic Length Functions and Teichmüller Spaces,” J.Differential Geometry, vol. 48, p. 275, 1998.
[10] R.S. Hamilton, “The Ricci Flow on Surfaces,” Math. General Relativity, vol. 71, pp. 237262, 1988.
[11] B. Chow and F. Luo, “Combinatorial Ricci Flows on Surfaces,” J.Differential Geometry, vol. 63, no. 1, pp. 97129, 2003.
[12] P. Buser, Geometry and Spectra of Compact Riemann Surfaces. Birkhauser, 1992.
[13] W.P. Thurston, ThreeDimensional Geometry and Topology. Princeton Univ. Press, 1997.
[14] J.R. Munkres, Elements of Algebraic Topology. AddisonWesley, 1984.
[15] J.W. Tangelder and R.C. Veltkamp, “A Survey of Content Based 3D Shape Retrieval Methods,” Multimedia Tools and Applications, inpress, 2008.
[16] C. Carner, M. Jin, X. Gu, and H. Qin, “TopologyDriven Surface Mappings with Robust Feature Alignment,” Proc. IEEE Visualization Conf., pp. 543550, 2005.
[17] N. Iyer, S. Jayanti, K. Lou, Y. Kalyanaraman, and K. Ramani, “ThreeDimensional Shape Searching: StateoftheArt Review and Future Trends,” ComputerAided Design, vol. 37, no. 5, pp.509530, 2005.
[18] X. Gu, S. Wang, J. Kim, Y. Zeng, Y. Wang, H. Qin, and D. Samaras, “Ricci Flow for 3D Shape Analysis,” Proc. 11th IEEE Int'l Conf. Computer Vision (ICCV '07), pp. 18, 2007.
[19] R.M. Rustamov, “LaplaceBeltrami Eigenfunctions for Deformation Invariant Shape Representation,” Proc. Symp. Geometry Processing (SGP), 2007.
[20] M. Reuter, F.E. Wolter, and N. Petnecke, “LaplaceSpectra as Fingerprints for Shape Matching,” Proc. ACM Symp. Solid and Physical Modeling (SPM '05), pp. 101106, 2005.
[21] P. Xiang, C.O. Hua, F.X. Gang, and Z.B. Chuan, “Pose Insensitive 3D Retrieval by Poisson Shape Histogram,” Lecture Notes in Computer Science, vol. 4488, pp. 2532, 2007.
[22] V. Jain and H. Zhang, “A Spectral Approach to ShapeBased Retrieval of Articulated 3D Models,” Computer Aided Design, vol. 39, pp. 398407, 2007.
[23] M. BenChen and C. Gotsman, “Characterizing Shape Using Conformal Factors,” Proc. Eurographics Workshop Shape Retrieval, 2008.
[24] K. Stephenson, Introduction to Circle Packing. Cambridge Univ. Press, 2005.
[25] A. Elad and R. Kimmel, “On Bending Invariant Signatures for Surfaces,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp. 12851295, Oct. 2003.
[26] T. Tung and F. Schmitt, “The Augmented Multiresolution Reeb Graph Approach for ContentBased Retrieval of 3D Shapes,” Int'l J. Shape Modeling, vol. 11, no. 1, pp. 91120, 2005.
[27] R. Gal, A. Shamir, and D. CohenOr, “Pose Oblivious Shape Signature,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 2, pp. 261271, Mar./Apr. 2007.
[28] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The Princeton Shape Benchmark,” Proc. IEEE Int'l Conf. Shape Modeling Int'l (SMI '04), pp. 167178, 2004.
[29] R.S. Hamilton, “Three Manifolds with Positive Ricci Curvature,” J.Differential Geometry, vol. 17, pp. 255306, 1982.
[30] B. Chow, P. Lu, and L. Ni, “Hamilton's Ricci Flow,” Am. Math. Soc., vol. 77, 2006.
[31] B. Chow, S.C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, F. Luo, T. Ivey, D. Knopf, P. Lu, and L. Ni, “The Ricci Flow: Techniques and Applications. Part I: Mathematical Surveys and Monographs,” Am. Math. Soc., vol. 135, 2007.
[32] C. de Verdiere Yves, “Un Principe Variationnel pour les Empilements de Cercles,” Inventiones Math., vol. 104, no. 3, pp.655669, 1991.
[33] Braegger and Walter, “Kreispackungen und Triangulierungen,” Enseign. Math., vol. (2)38, no. 34, pp. 201217, 1992.
[34] I. Rivin, “Euclidean Structures on Simplicial Surfaces and Hyperbolic Volume,” Ann. Math., vol. 2, no. 3, pp. 553580, 1994.
[35] F. Luo, “Combinatorial Yamabe Flow on Surfaces,” Comm. Contemporary Math., vol. 6, no. 5, pp. 765780, 2004.
[36] F. Luo, On Teichmüller Space of Surface with Boundary, preprint, 2005.
[37] G. Perelman, “The Entropy Formula for the Ricci Flow and Its Geometric Applications,” technical report arXiv.org, Nov. 2002.
[38] G. Perelman, “Ricci Flow with Surgery on ThreeManifolds,” technical report arXiv.org, Mar. 2003.
[39] G. Perelman, “Finite Extinction Time for the Solutions to the Ricci Flow on Certain ThreeManifolds,” technical report arXiv.org, July 2003.
[40] G. Leibon, “Characterizing the Delaunay Decompositions of Compact Hyperbolic Surfaces,” Geometry and Topology, vol. 6, pp. 361391, 2002.
[41] A.I. Bobenko and B.A. Springborn, “Variational Principles for Circle Patterns and Koebe's Theorem,” Trans. Am. Math. Soc., vol. 256, no. 2, pp. 659689, 2004.
[42] M. Jin, J. Kim, F. Luo, and X. Gu, “Discrete Surface Ricci Flow,” IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 5, Sept./Oct. 2008.
[43] L. Kharevych, B. Springborn, and P. Schröder, “Discrete Conformal Mappings via Circle Patterns,” ACM Trans. Graphics, vol. 25, no. 2, pp. 412438, 2006.
[44] M. BenChen, C. Gotsman, and G. Bunin, “Conformal Flattening by Curvature Prescription and Metric Scaling,” Computer Graphics Forum (Proc. Eurographics '08), vol. 27, no. 2, 2008.
[45] Y.L. Yang, J. Kim, F. Luo, and X. Gu, “Optimal Surface Parameterization Using Inverse Curvature Map,” IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 5, pp. 10541066, Sept./Oct. 2008.
[46] A.I. Bobenko and B.A. Springborn, “Variational Principles for Circle Patterns and Koebe's Theorem,” Trans. Am. Math. Soc., vol. 356, pp. 659689, 2004.
[47] A. Bobenko and P. Schröder, “Discrete Willmore Flow,” Proc. Symp. Geometry Processing (SGP '05), pp. 101110, 2005.
[48] Y.C. de Verdière, “Un Principe Variationnel pour les Empilements de Cercles. [a Variational Principle for Circle Packings],” Invent. Math., vol. 104, no. 3, pp. 655669, 1991.
[49] P.L. Bowers and M.K. Hurdal, “Planar Conformal Mappings of Piecewise Flat Surfaces,” Visualization and Math. III, pp.334, Springer, 2003.
[50] B. Springborn, P. Schröder, and U. Pinkall, “Conformal Equivalence of Triangle Meshes,” Proc. ACM SIGGRAPH, 2008.
[51] M.S. Floater and K. Hormann, “Surface Parameterization: A Tutorial and Survey,” Advances in Multiresolution for Geometric Modelling, pp. 157186, Springer, 2005.
[52] A. Sheffer, E. Praun, and K. Rose, “Mesh Parameterization Methods and Their Applications,” Foundations and Trends in Computer Graphics and Vision, vol. 2, no. 2, 2006.