Subscribe

Issue No.03 - May/June (2009 vol.15)

pp: 493-503

Hendrik Tessendorf , Albert-Ludwigs-University Freiburg, Freiburg

Markus Becker , Albert-Ludwigs-University Freiburg, Freiburg

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/TVCG.2008.107

ABSTRACT

We propose a novel boundary handling algorithm for particle-based fluids. Based on a predictor-corrector scheme for both velocity and position, one- and two-way coupling with rigid bodies can be realized. The proposed algorithm offers significant improvements over existing penalty-based approaches. Different slip conditions can be realized and non-penetration is enforced. Direct forcing is employed to meet the desired boundary conditions and to ensure valid states after each simulation step. We have performed various experiments in 2D and 3D. They illustrate one- and two-way coupling of rigid bodies and fluids, the effects of hydrostatic and dynamic forces on a rigid body as well as different slip conditions. Numerical experiments and performance measurements are provided.

INDEX TERMS

Physically based modeling, Animation

CITATION

Hendrik Tessendorf, Markus Becker, "Direct Forcing for Lagrangian Rigid-Fluid Coupling",

*IEEE Transactions on Visualization & Computer Graphics*, vol.15, no. 3, pp. 493-503, May/June 2009, doi:10.1109/TVCG.2008.107REFERENCES

- [1] R. Bridson and M. Müller-Fischer, “Fluid Simulation: SIGGRAPH 2007 Course Notes,”
ACM SIGGRAPH '07 Courses, pp. 1-81, 2007.- [3] S. Hieber, “Particle-Methods for Flow-Structure Interactions, ” PhD dissertation, Swiss Fed. Inst. of Technology Zürich (ETHZ), 2007.
- [4] T. Shinar, C. Schroeder, and R. Fedkiw, “Two-Way Coupling of Rigid and Deformable Bodies,”
Proc. ACM SIGGRAPH/EurographicsSymp. Computer Animation (SCA), 2008.- [5] T. Shinar, “Simulation of Coupled Rigid and Deformable Solids and Multiphase Fluids, ” PhD dissertation, Stanford Univ., June 2008.
- [8] M. Becker and M. Teschner, “Weakly Compressible SPH for Free Surface Flows,”
Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '07), pp. 63-72, Aug. 2007.- [11] N. Foster and D. Metaxas, “Controlling Fluid Animation,”
Computer Graphics Int'l, vol. 97, pp. 178-188, 1997.- [13] R. Fedkiw, J. Stam, and H.W. Jensen, “Visual Simulation of Smoke,”
Proc. ACM SIGGRAPH '01, pp. 15-22, 2001.- [14] N. Foster and R. Fedkiw, “Practical Animation of Liquids,”
Proc. ACM SIGGRAPH '01, pp. 23-30, 2001.- [20] N. Chentanez, B.E. Feldman, F. Labelle, J.F. O'Brien, and J.R. Shewchuk, “Liquid Simulation on Lattice-Based Tetrahedral Meshes,”
Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '07), pp. 219-228, 2007.- [21] N. Chentanez, T.G. Goktekin, B.E. Feldman, and J.F. O'Brien, “Simultaneous Coupling of Fluids and Deformable Bodies,”
Proc.ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '06), pp. 83-89, 2006.- [23] C. Batty, F. Bertails, and R. Bridson, “A Fast Variational Framework for Accurate Solid-Fluid Coupling,”
Proc. ACM SIGGRAPH '07, p.100, 2007.- [25] M. Carlson, P. Mucha, and G. Turk, “Rigid Fluid: Animating the Interplay between Rigid Bodies and Fluid,”
Proc. ACM SIGGRAPH '04, pp. 377-384, 2004.- [26] O. Génevaux, A. Habibi, and J. Dischler, “Simulating Fluid-Solid Interaction,”
Proc. Graphics Interface Conf., 2003.- [38] A. Robinson-Mosher, T. Shinar, J. Gretarsson, J. Su, and R. Fedkiw, “Two-Way Coupling of Fluids to Rigid and Deformable Solids and Shells,”
ACM Trans. Graphics, vol. 27, 2008.- [39] R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutré, and M. Gross, “A Unified Lagrangian Approach to Solid-Fluid Animation,”
Proc. Eurographics Symp. Point-Based Graphics (PBG '05), pp. 125-134, 2005.- [40] B. Solenthaler, J. Schläfli, and R. Pajarola, “A Unified Particle Model for Fluid Solid Interactions: Research Articles,”
Computer Animation and Virtual Worlds, vol. 18, no. 1, pp. 69-82, 2007.- [41] R. Keiser, B. Adams, P. Dutré, L. Guibas, and M. Pauly, “Multiresolution Particle-Based Fluids, ” technical report, ETH Zurich, 2006.
- [42] S. Falappi and M. Gallati, “SPH Simulation of Water Waves Generated by Granular Landslides,”
Proc. 32nd Congress of the Int'l Assoc. Hydraulic Eng. and Research (IAHR), 2007.- [50] M. Gissler, M. Becker, and M. Teschner, “Local Constraint Methods for Deformable Objects,”
Proc. Virtual Reality Interactions and Physical Simulations (VriPhys '06), pp. 25-32, Nov. 2006.- [51] E. Sifakis, T. Shinar, G. Irving, and R. Fedkiw, “Hybrid Simulation of Deformable Solids,”
Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '07), pp. 81-90, 2007.- [52] N. Thürey, K. Iglberger, and U. Rüde, “Free Surface Flows with Moving and Deforming Objects with LBM,”
Proc. Vision, Modeling, Visualization (VMV '06), pp. 193-200, 2006.- [54] R. Gingold and J. Monaghan, “Smoothed Particle Hydrodynamics—Theory and Application to Non-Spherical Stars,”
Monthly Notices of the Royal Astronomical Soc., vol. 181, pp. 375-389, 1977.- [56] B. Adams, M. Pauly, R. Keiser, and L.J. Guibas, “Adaptively Sampled Particle Fluids,”
Proc. ACM SIGGRAPH '07, p. 48, 2007.- [58] M. Teschner, B. Heidelberger, M. Müller, D. Pomeranets, and M. Gross, “Optimized Spatial Hashing for Collision Detection of Deformable Objects,”
Proc. Vision, Modeling, Visualization (VMV'03), pp. 47-54, 2003.- [59] W.E. Lorensen and H.E. Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,”
Proc. ACM SIGGRAPH '87, pp. 163-169, 1987. |