The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.02 - March/April (2009 vol.15)
pp: 339-350
Jonathan Su , Stanford University, Stanford
Geoffrey Irving , Stanford University, Stanford
Andrew Selle , Stanford University, Stanford
ABSTRACT
In this paper we simulate high resolution cloth consisting of up to 2 million triangles which allows us to achieve highly detailed folds and wrinkles. Since the level of detail is also influenced by object collision and self collision, we propose a more accurate model for cloth-object friction. We also propose a robust history-based repulsion/collision framework where repulsions are treated accurately and efficiently on a per time step basis. Distributed memory parallelism is used for both time evolution and collisions and we specifically address Gauss-Seidel ordering of repulsion/collision response. This algorithm is demonstrated by several high resolution and high-fidelity simulations.
INDEX TERMS
computer graphics, geometric algorithms, physically based modeling, cloth, collision responce, friction
CITATION
Jonathan Su, Geoffrey Irving, Andrew Selle, "Robust High-Resolution Cloth Using Parallelism, History-Based Collisions, and Accurate Friction", IEEE Transactions on Visualization & Computer Graphics, vol.15, no. 2, pp. 339-350, March/April 2009, doi:10.1109/TVCG.2008.79
REFERENCES
[1] D. Baraff, A. Witkin, and M. Kass, “Untangling Cloth,” ACM Trans. Graphics, Proc. ACM SIGGRAPH, vol. 22, pp. 862-870, 2003.
[2] R. Bridson, S. Marino, and R. Fedkiw, “Simulation of Clothing with Folds and Wrinkles,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '03), pp. 28-36, 2003.
[3] L. Cutler, R. Gershbein, X. Wang, C. Curtis, E. Curtis, C. Curtis, E. Maigret, and L. Prasso, “An Art-Directed Wrinkle System for CG Character Clothing,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA), 2005.
[4] F. Cordier, H. Seo, and N. Magnenat-Thalmann, “Made-to-Measure Technologies for an Online Clothing Store,” IEEE Computer Graphics and Applications, vol. 23, no. 1, pp. 38-48, Jan. 2003.
[5] P. Decaudin, D. Julius, J. Wither, L. Boissieux, A. Sheffer, and M.-P. Cani, “Virtual Garments: A Fully Geometric Approach for Clothing Design,” Proc. Eurographics '06, Computer Graphics Forum, 2006.
[6] R. McDonnell, S. Dobbyn, S. Collins, and C. O'Sullivan, “Perceptual Evaluation of LOD Clothing for Virtual Humans,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA), 2006.
[7] N. Govindaraju, D. Knott, N. Jain, I. Kabul, R. Tamstorf, R. Gayle, M. Lin, and D. Manocha, “Interactive Collision Detection between Deformable Models Using Chromatic Decomposition,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 24, no. 3, pp. 991-999, 2005.
[8] A. Sud, N. Govindaraju, R. Gayle, I. Kabul, and D. Manocha, “Fast Proximity Computation among Deformable Models Using Discrete Voronoi Diagrams,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 25, no. 3, pp. 1144-1153, 2006.
[9] P. Volino and N. Magnenat-Thalmann, “Resolving Surface Collisions through Intersection Contour Minimization,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 25, no. 3, pp. 1154-1159, 2006.
[10] R. Bridson, R. Fedkiw, and J. Anderson, “Robust Treatment of Collisions, Contact and Friction for Cloth Animation,” ACM Trans. Graphics, vol. 21, no. 3, pp. 594-603, 2002.
[11] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically Deformable Models,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 21, no. 4, pp. 205-214, 1987.
[12] D. Baraff and A. Witkin, “Large Steps in Cloth Simulation,” Proc. ACM SIGGRAPH '98, pp. 43-54, 1998.
[13] M. Keckeisen and W. Blochinger, “Parallel Implicit Integration for Cloth Animations on Distributed Memory Architectures,” Proc. Eurographics Symp. Parallel Graphics and Visualization (EGPGV), 2004.
[14] B. Thomaszewski and W. Blochinger, “Parallel Simulation of Cloth on Distributed Memory Architectures,” Proc. Eurographics Symp. Parallel Graphics and Visualization (EGPGV), 2006.
[15] B. Thomaszewski, S. Pabst, and W. Blochinger, “Exploiting Parallelism in Physically-Based Simulations on Multi-Core Processor Architectures,” Proc. Eurographics Symp. Parallel Graphics and Visualization (EGPGV), 2007.
[16] R. Lario, C. Garcia, M. Prieto, and F. Tirado, “Rapid Parallelization of a Multilevel Cloth Simulator Using Openmp,” Proc. Third European Workshop OpenMP (EWOMP), 2001.
[17] S. Romero, L. Romero, and E. Zapata, “Rapid Parallelization of a Multilevel Cloth Simulator Using Openmp,” Proc. European Conf. Parallel Computing (EuroPar), 2000.
[18] F. Zara, F. Faure, and J.-M. Vincent, “Physical Cloth Animation on a PC Cluster,” Proc. Fourth Eurographics Workshop Parallel Graphics and Visualisation (EGWPGV), 2002.
[19] X. Provot, “Collision and Self-Collision Handling in Cloth Model Dedicated to Design Garment,” Graphic Interface, pp. 177-89, 1997.
[20] S. Huh, D.N. Metaxas, and N.I. Badler, “Collision Resolutions in Cloth Simulation,” Computer Animation, 2001.
[21] S. Huh and D. Metaxas, “A Collision Resolution Algorithm for Clump-Free Fast Moving Cloth,” Proc. Computer Graphics Int'l Conf. (CGI), 2005.
[22] P. Volino, M. Courchesne, and N. Magnenat-Thalmann, “Versatile and Efficient Techniques for Simulating Cloth and Other Deformable Objects,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), pp. 137-144, 1995.
[23] P. Volino and N. Magnenat-Thalmann, “Accurate Collision Response on Polygonal Meshes,” Proc. Computer Animation Conf. (CA '00), pp. 154-163, 2000.
[24] J. Weil, “The Synthesis of Cloth Objects,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), pp. 49-54, 1986.
[25] D. Terzopoulos and K. Fleischer, “Modeling Inelastic Deformation: Viscoelasticity, Plasticity, Fracture,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), pp. 269-278, 1988.
[26] J.A. Thingvold and E. Cohen, “Physical Modeling with B-Spline Surfaces for Interactive Design and Animation,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), pp. 129-137, 1992.
[27] M. Carignan, Y. Yang, N. Magnenat-Thalmann, and D. Thalmann, “Dressing Animated Synthetic Actors with Complex Deformable Clothes,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), pp. 99-104, 1992.
[28] H. Okabe, H. Imaoka, T. Tomiha, and H. Niwaya, “Three Dimensional Apparel CAD System,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), pp. 105-110, 1992.
[29] D.E. Breen, D.H. House, and M.J. Wozny, “Predicting the Drape of Woven Cloth Using Interacting Particles,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), pp. 365-372, 1994.
[30] Cloth Modeling and Animation, D.H. House and D.E. Breen, eds., A.K. Peters, 2000.
[31] M. Meyer, G. Debunne, M. Desbrun, and A.H. Barr, “Interactive Animation of Cloth-Like Objects in Virtual Reality,” J. Visualization and Computer Animation, vol. 12, no. 1, pp. 1-12, 2001.
[32] D. Parks and D. Forsyth, “Improved Integration for Cloth Simulation,” Proc. Eurographics '02, 2002.
[33] E. Boxerman and U. Ascher, “Decomposing Cloth,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '04), pp.153-161, 2004.
[34] P. Volino and N. Magnenat-Thalmann, “Implicit Midpoint Integration and Adaptive Damping for Efficient Cloth Simulation,” Computer Animation and Virtual Worlds, vol. 16, pp. 163-175, 2005.
[35] S. Oh, J. Ahn, and K. Wohn, “Low Damped Cloth Simulation,” Visual Computer, vol. 22, no. 2, Feb. 2006.
[36] S. Hadap, E. Bangarter, P. Volino, and N. Magnenat-Thalmann, “Animating Wrinkles on Clothes,” Proc. Visualization (VIS '99), pp.175-523, 1999.
[37] M.-H. Choi, M. Hong, and S. Welch, “Modeling and Simulation of Sharp Creases,” ACM SIGGRAPH 2004 Sketches and Applications. ACM Press, 2004.
[38] O. Etzmuss, M. Keckeisen, and W. Strasser, “A Fast Finite Element Solution for Cloth Modelling,” Proc. 11th Pacific Conf. Computer Graphics and Applications (Pacific Graphics '03), pp. 244-251, 2003.
[39] G. Irving, J. Teran, and R. Fedkiw, “Invertible Finite Elements for Robust Simulation of Large Deformation,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '04), pp. 131-140, 2004.
[40] K.-J. Choi and H.-S. Ko, “Stable but Responsive Cloth,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 21, pp. 604-611, 2002.
[41] E. Grinspun, A. Hirani, M. Desbrun, and P. Schröder, “Discrete Shells,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '03), pp. 62-67, 2003.
[42] M. Bergou, M. Wardetzky, D. Harmon, D. Zorin, and E. Grinspun, “A Quadratic Bending Model for Inextensible Surfaces,” Proc. Fourth Eurographics Symp. Geometry Processing (SGP '06), pp. 227-230, 2006.
[43] B. Thomaszewski, M. Wacker, and W. Strasser, “A Consistent Bending Model for Cloth Simulation with Corotational Subdivision Finite Elements,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA), 2006.
[44] P. Volino and N. Magnenat-Thalmann, “Simple Linear Bending Stiffness in Particle Systems,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '06), pp. 101-105, 2006.
[45] E. Grinspun, P. Krysl, and P. Schröder, “CHARMS: A Simple Framework for Adaptive Simulation,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 21, pp. 281-290, 2002.
[46] P. Volino and N. Magnenat-Thalmann, “Efficient Self-Collision Detection on Smoothly Discretized Surface Animations Using Geometrical Shape Regularity,” Proc. Eurographics '94, ser. Computer Graphics Forum, vol. 13, pp. C-155-C-166, 1994.
[47] E. Sifakis, T. Shinar, G. Irving, and R. Fedkiw, “Hybrid Simulation of Deformable Solids,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '07), pp. 81-90, 2007.
[48] P. Volino and N. Magnenat Thalmann, “Collision and Self-Collision Detection: Efficient and Robust Solutions for Highly Deformable Surfaces,” Computer Animation and Simulation, D. Terzopoulos and D. Thalmann, eds., pp. 55-65, Springer-Verlag, 1995.
[49] G. van den Bergen, “Efficient Collision Detection of Complex Deformable Models Using AABB Trees,” J. Graphics Tools, vol. 2, no. 4, pp. 1-14, 1997.
19 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool