This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Robust High-Resolution Cloth Using Parallelism, History-Based Collisions, and Accurate Friction
March/April 2009 (vol. 15 no. 2)
pp. 339-350
Andrew Selle, Stanford University, Stanford
Jonathan Su, Stanford University, Stanford
Geoffrey Irving, Stanford University, Stanford
Ronald Fedkiw, Stanford University, Stanford
In this paper we simulate high resolution cloth consisting of up to 2 million triangles which allows us to achieve highly detailed folds and wrinkles. Since the level of detail is also influenced by object collision and self collision, we propose a more accurate model for cloth-object friction. We also propose a robust history-based repulsion/collision framework where repulsions are treated accurately and efficiently on a per time step basis. Distributed memory parallelism is used for both time evolution and collisions and we specifically address Gauss-Seidel ordering of repulsion/collision response. This algorithm is demonstrated by several high resolution and high-fidelity simulations.

[1] D. Baraff, A. Witkin, and M. Kass, “Untangling Cloth,” ACM Trans. Graphics, Proc. ACM SIGGRAPH, vol. 22, pp. 862-870, 2003.
[2] R. Bridson, S. Marino, and R. Fedkiw, “Simulation of Clothing with Folds and Wrinkles,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '03), pp. 28-36, 2003.
[3] L. Cutler, R. Gershbein, X. Wang, C. Curtis, E. Curtis, C. Curtis, E. Maigret, and L. Prasso, “An Art-Directed Wrinkle System for CG Character Clothing,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA), 2005.
[4] F. Cordier, H. Seo, and N. Magnenat-Thalmann, “Made-to-Measure Technologies for an Online Clothing Store,” IEEE Computer Graphics and Applications, vol. 23, no. 1, pp. 38-48, Jan. 2003.
[5] P. Decaudin, D. Julius, J. Wither, L. Boissieux, A. Sheffer, and M.-P. Cani, “Virtual Garments: A Fully Geometric Approach for Clothing Design,” Proc. Eurographics '06, Computer Graphics Forum, 2006.
[6] R. McDonnell, S. Dobbyn, S. Collins, and C. O'Sullivan, “Perceptual Evaluation of LOD Clothing for Virtual Humans,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA), 2006.
[7] N. Govindaraju, D. Knott, N. Jain, I. Kabul, R. Tamstorf, R. Gayle, M. Lin, and D. Manocha, “Interactive Collision Detection between Deformable Models Using Chromatic Decomposition,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 24, no. 3, pp. 991-999, 2005.
[8] A. Sud, N. Govindaraju, R. Gayle, I. Kabul, and D. Manocha, “Fast Proximity Computation among Deformable Models Using Discrete Voronoi Diagrams,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 25, no. 3, pp. 1144-1153, 2006.
[9] P. Volino and N. Magnenat-Thalmann, “Resolving Surface Collisions through Intersection Contour Minimization,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 25, no. 3, pp. 1154-1159, 2006.
[10] R. Bridson, R. Fedkiw, and J. Anderson, “Robust Treatment of Collisions, Contact and Friction for Cloth Animation,” ACM Trans. Graphics, vol. 21, no. 3, pp. 594-603, 2002.
[11] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically Deformable Models,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 21, no. 4, pp. 205-214, 1987.
[12] D. Baraff and A. Witkin, “Large Steps in Cloth Simulation,” Proc. ACM SIGGRAPH '98, pp. 43-54, 1998.
[13] M. Keckeisen and W. Blochinger, “Parallel Implicit Integration for Cloth Animations on Distributed Memory Architectures,” Proc. Eurographics Symp. Parallel Graphics and Visualization (EGPGV), 2004.
[14] B. Thomaszewski and W. Blochinger, “Parallel Simulation of Cloth on Distributed Memory Architectures,” Proc. Eurographics Symp. Parallel Graphics and Visualization (EGPGV), 2006.
[15] B. Thomaszewski, S. Pabst, and W. Blochinger, “Exploiting Parallelism in Physically-Based Simulations on Multi-Core Processor Architectures,” Proc. Eurographics Symp. Parallel Graphics and Visualization (EGPGV), 2007.
[16] R. Lario, C. Garcia, M. Prieto, and F. Tirado, “Rapid Parallelization of a Multilevel Cloth Simulator Using Openmp,” Proc. Third European Workshop OpenMP (EWOMP), 2001.
[17] S. Romero, L. Romero, and E. Zapata, “Rapid Parallelization of a Multilevel Cloth Simulator Using Openmp,” Proc. European Conf. Parallel Computing (EuroPar), 2000.
[18] F. Zara, F. Faure, and J.-M. Vincent, “Physical Cloth Animation on a PC Cluster,” Proc. Fourth Eurographics Workshop Parallel Graphics and Visualisation (EGWPGV), 2002.
[19] X. Provot, “Collision and Self-Collision Handling in Cloth Model Dedicated to Design Garment,” Graphic Interface, pp. 177-89, 1997.
[20] S. Huh, D.N. Metaxas, and N.I. Badler, “Collision Resolutions in Cloth Simulation,” Computer Animation, 2001.
[21] S. Huh and D. Metaxas, “A Collision Resolution Algorithm for Clump-Free Fast Moving Cloth,” Proc. Computer Graphics Int'l Conf. (CGI), 2005.
[22] P. Volino, M. Courchesne, and N. Magnenat-Thalmann, “Versatile and Efficient Techniques for Simulating Cloth and Other Deformable Objects,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), pp. 137-144, 1995.
[23] P. Volino and N. Magnenat-Thalmann, “Accurate Collision Response on Polygonal Meshes,” Proc. Computer Animation Conf. (CA '00), pp. 154-163, 2000.
[24] J. Weil, “The Synthesis of Cloth Objects,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), pp. 49-54, 1986.
[25] D. Terzopoulos and K. Fleischer, “Modeling Inelastic Deformation: Viscoelasticity, Plasticity, Fracture,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), pp. 269-278, 1988.
[26] J.A. Thingvold and E. Cohen, “Physical Modeling with B-Spline Surfaces for Interactive Design and Animation,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), pp. 129-137, 1992.
[27] M. Carignan, Y. Yang, N. Magnenat-Thalmann, and D. Thalmann, “Dressing Animated Synthetic Actors with Complex Deformable Clothes,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), pp. 99-104, 1992.
[28] H. Okabe, H. Imaoka, T. Tomiha, and H. Niwaya, “Three Dimensional Apparel CAD System,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), pp. 105-110, 1992.
[29] D.E. Breen, D.H. House, and M.J. Wozny, “Predicting the Drape of Woven Cloth Using Interacting Particles,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), pp. 365-372, 1994.
[30] Cloth Modeling and Animation, D.H. House and D.E. Breen, eds., A.K. Peters, 2000.
[31] M. Meyer, G. Debunne, M. Desbrun, and A.H. Barr, “Interactive Animation of Cloth-Like Objects in Virtual Reality,” J. Visualization and Computer Animation, vol. 12, no. 1, pp. 1-12, 2001.
[32] D. Parks and D. Forsyth, “Improved Integration for Cloth Simulation,” Proc. Eurographics '02, 2002.
[33] E. Boxerman and U. Ascher, “Decomposing Cloth,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '04), pp.153-161, 2004.
[34] P. Volino and N. Magnenat-Thalmann, “Implicit Midpoint Integration and Adaptive Damping for Efficient Cloth Simulation,” Computer Animation and Virtual Worlds, vol. 16, pp. 163-175, 2005.
[35] S. Oh, J. Ahn, and K. Wohn, “Low Damped Cloth Simulation,” Visual Computer, vol. 22, no. 2, Feb. 2006.
[36] S. Hadap, E. Bangarter, P. Volino, and N. Magnenat-Thalmann, “Animating Wrinkles on Clothes,” Proc. Visualization (VIS '99), pp.175-523, 1999.
[37] M.-H. Choi, M. Hong, and S. Welch, “Modeling and Simulation of Sharp Creases,” ACM SIGGRAPH 2004 Sketches and Applications. ACM Press, 2004.
[38] O. Etzmuss, M. Keckeisen, and W. Strasser, “A Fast Finite Element Solution for Cloth Modelling,” Proc. 11th Pacific Conf. Computer Graphics and Applications (Pacific Graphics '03), pp. 244-251, 2003.
[39] G. Irving, J. Teran, and R. Fedkiw, “Invertible Finite Elements for Robust Simulation of Large Deformation,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '04), pp. 131-140, 2004.
[40] K.-J. Choi and H.-S. Ko, “Stable but Responsive Cloth,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 21, pp. 604-611, 2002.
[41] E. Grinspun, A. Hirani, M. Desbrun, and P. Schröder, “Discrete Shells,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '03), pp. 62-67, 2003.
[42] M. Bergou, M. Wardetzky, D. Harmon, D. Zorin, and E. Grinspun, “A Quadratic Bending Model for Inextensible Surfaces,” Proc. Fourth Eurographics Symp. Geometry Processing (SGP '06), pp. 227-230, 2006.
[43] B. Thomaszewski, M. Wacker, and W. Strasser, “A Consistent Bending Model for Cloth Simulation with Corotational Subdivision Finite Elements,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA), 2006.
[44] P. Volino and N. Magnenat-Thalmann, “Simple Linear Bending Stiffness in Particle Systems,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '06), pp. 101-105, 2006.
[45] E. Grinspun, P. Krysl, and P. Schröder, “CHARMS: A Simple Framework for Adaptive Simulation,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 21, pp. 281-290, 2002.
[46] P. Volino and N. Magnenat-Thalmann, “Efficient Self-Collision Detection on Smoothly Discretized Surface Animations Using Geometrical Shape Regularity,” Proc. Eurographics '94, ser. Computer Graphics Forum, vol. 13, pp. C-155-C-166, 1994.
[47] E. Sifakis, T. Shinar, G. Irving, and R. Fedkiw, “Hybrid Simulation of Deformable Solids,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '07), pp. 81-90, 2007.
[48] P. Volino and N. Magnenat Thalmann, “Collision and Self-Collision Detection: Efficient and Robust Solutions for Highly Deformable Surfaces,” Computer Animation and Simulation, D. Terzopoulos and D. Thalmann, eds., pp. 55-65, Springer-Verlag, 1995.
[49] G. van den Bergen, “Efficient Collision Detection of Complex Deformable Models Using AABB Trees,” J. Graphics Tools, vol. 2, no. 4, pp. 1-14, 1997.

Index Terms:
computer graphics, geometric algorithms, physically based modeling, cloth, collision responce, friction
Citation:
Andrew Selle, Jonathan Su, Geoffrey Irving, Ronald Fedkiw, "Robust High-Resolution Cloth Using Parallelism, History-Based Collisions, and Accurate Friction," IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 2, pp. 339-350, March-April 2009, doi:10.1109/TVCG.2008.79
Usage of this product signifies your acceptance of the Terms of Use.