The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.05 - September/October (2008 vol.14)
pp: 1126-1139
Gerd Reis , TU Kaiserslautern, Kaiserslautern
Frank Zeilfelder , TU Darmstadt, Darmstadt
Martin Hering-Bertram , Fraunhofer Institut, Kaiserslautern
Gerald E. Farin , Arizona State University, Tempe
Hans Hagen , University of Kaiserslautern , Kaiserslautern
ABSTRACT
We present a novel GPU-based algorithm for high-quality rendering of bivariate spline surfaces. An essential difference to the known methods for rendering graph surfaces is that we use quartic smooth splines on triangulations rather than triangular meshes. Our rendering approach is direct in the sense that since we do not use an intermediate tessellation but rather compute ray-surface intersections (by solving quartic equations numerically) as well as surface normals (by using Bernstein-B{\'e}zier techniques) for Phong illumination on the GPU. Inaccurate shading and artifacts appearing for triangular tesselated surfaces are completely avoided. Level of detail is automatic since all computations are done on a per fragment basis. We compare three different (quasi-) interpolating schemes for uniformly sampled gridded data, which differ in the smoothness and the approximation properties of the splines. The results show that our hardware based renderer leads to visualizations (including texturing, multiple light sources, environment mapping, etc.) of highest quality.
INDEX TERMS
Raytracing, Spline and piecewise polynomial approximation
CITATION
Gerd Reis, Frank Zeilfelder, Martin Hering-Bertram, Gerald E. Farin, Hans Hagen, "High-Quality Rendering of Quartic Spline Surfaces on the GPU", IEEE Transactions on Visualization & Computer Graphics, vol.14, no. 5, pp. 1126-1139, September/October 2008, doi:10.1109/TVCG.2008.66
REFERENCES
[1] O. Abert , M. Geimer , and S. Müller , “Direct and Fast Ray Tracing of NURBS Surfaces,” Proc. IEEE/EG Symp. Interactive Ray Tracing (RT '06), pp. 161-168, 2006.
[2] P. Alfeld , B. Piper , and L. Schumaker , “An Explicit Basis for $C^{1}$ Quartic Bivariate Splines,” SIAM J. Numerical Analysis, vol. 24, pp.891-911, 1987.
[3] C. Benthin , I. Wald , and P. Slusallek , “Ray Tracing of Free-Form Surfaces,” Proc. Third Int'l Conf. Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa (Afrigraph '04), pp. 99-106, 2004.
[4] M. Bertram , X. Tricoche , and H. Hagen , “Adaptive Smooth Scattered-Data Approximation,” Proc. Joint Eurographics and IEEE TCVG Symp. Visualization (VisSym '03), pp. 177-184 & 297, 2003.
[5] J. Bolz and P. Schrödor , Evaluation of Subdivision Surfaces on Programmable Graphics Hardware, http://www.multires.caltech. edu/pubs GPUSubD.pdf , 2002.
[6] T. Boubekeur and C. Schlick , “Generic Mesh Refinement on GPU,” Graphics Hardware, 2005.
[7] J. Bruijns , “Quadratic Bézier Triangles as Drawing Primitives,” Proc. ACM SIGGRAPH/Eurographics Workshop Graphics Hardware (GH '98), pp. 15-24, 1998.
[8] S. Campagna , P. Slusallek , and H.-P. Seidel , “Ray Tracing of Spline Surfaces: Bézier Clipping, Chebyshev Boxing, and Bounding Volume Hierarchy—A Critical Comparison with New Results,” The Visual Computer, vol. 13, pp. 265-282, 1997.
[9] C. Chui , “Multivariate Splines,” CBMS 54. SIAM, 1989.
[10] C. Chui , G. Hecklin , G. Nürnberger , and F. Zeilfelder , Optimal Lagrange Interpolation by Quartic $C^{1}$ Splines on Triangulations, submitted, 2006.
[11] P. Cignoni , F. Ganovelli , E. Gobbetti , F. Marton , F. Ponchio , and R. Scopigno , “Planet-Sized Batched Dynamic Adaptive Meshes (P-BDAM),” Proc. IEEE Visualization Conf. (VIS '03), pp. 147-154, 2003.
[12] C. de Boor , “B-Form Basics,” Geometric Modeling, G. Farin, ed., pp.131-148, 1987.
[13] C. de Boor , K. Höllig , and S. Riemenschneider , Box Splines. Springer, 1993.
[14] C. de Boor and Q. Jia , “A Sharp Upper Bound on the Approximation Order of Smooth Bivariate PP Functions,” J.Approximation Theory, vol. 72, pp. 24-33, 1993.
[15] M. Duchaineau , M. Wolinsky , D. Sigeti , M. Miller , C. Aldrich , and M. Mineev-Weinstein , “ROAMing Terrain: Real-Time Optimally Adapting Meshes,” Proc. IEEE Visualization Conf. (VIS '97), pp. 81-88, 1997.
[16] G. Farin , “Triangular Bernstein-Bézier Patches,” Computer Aided Geometric Design, vol. 3, pp. 83-127, 1986.
[17] G. Farin , Curves and Surfaces for CAGD: A Practical Guide. Morgan Kaufmann, 2002.
[18] M. Geimer and O. Abert , “Interactive Ray Tracing of Trimmed Bicubic Bézier Surfaces without Triangulation,” Proc. Int'l Conf. Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG '05), pp. 71-78, 2005.
[19] M. Guthe , A. Balazs , and R. Klein , “GPU-Based Trimming and Tessellation of NURBS and T-Spline Surfaces,” Proc. ACM SIGGRAPH '05, pp. 1016-1023, 2005.
[20] J. Haber , F. Zeilfelder , O. Davydov , and H.-P. Seidel , “Smooth Approximation and Rendering of Large Scattered Data Sets,” Proc. IEEE Visualization Conf. (VIS '01), pp. 341-347 & 571, 2001.
[21] D. Herbison-Evans , “Solving Quartics and Cubics for Graphics,” Graphics Gems V, AP Professional, 1995.
[22] J. Hirche , A. Ehlert , S. Guthe , and M. Doggett , “Hardware Accelerated Per-Pixel Displacement,” Proc. Graphics Interface Conf. (GI '04), pp. 153-158, 2004.
[23] J. Hoscheck and D. Lasser , Fundamentals of Computer Aided Geometric Design. AK Peters, 1993.
[24] L. Hwa , M. Duchaineau , and K.I. Joy , “Adaptive 4-8 Texture Hierarchies,” Proc. IEEE Visualization Conf. (VIS '04), pp. 219-226, 2004.
[25] A. Knoll , Y. Hijazi , A. Kensler , M. Schott , C. Hansen , and H. Hagen , “Fast and Robust Ray Tracing of General Implicits on the GPU,” Univ. of Utah, Technical Report UUSCI-2007-014, 2007.
[26] A. Knoll , Y. Hijazi , I. Wald , C. Hansen , and H. Hagen , “Interactive Ray Tracing of Arbitrary Implicits with SIMD Interval Arithmetic,” Proc. IEEE/EG Symp. Interactive Ray Tracing (RT '07), pp.11-18, 2007.
[27] N. Kohlmüller , G. Nürnberger , and F. Zeilfelder , Construction of Cubic 3D Spline Surfaces by Lagrange Interpolation at Selected Points, T. Lyche, M.-L. Mazure, and L.L. Schumaker, eds., Curve and Surface Design, Saint-Malo 2002, pp. 235-245, 2003.
[28] M.-J. Lai and L. Schumaker , Splines on Triangulations, to appear, 2006.
[29] P. Lindstrom and V. Pascucci , “Terrain Simplification Simplified: A General Framework for View-Dependent Out-of-Core Visualization,” IEEE Trans. Visualization and Computer Graphics, vol. 8, no. 3, pp. 239-254, July-Sept. 2002.
[30] C. Loop and J. Blinn , “Real-Time GPU Rendering of Piecewise Algebraic Surfaces,” Proc. ACM SIGGRAPH '06, pp. 664-670, 2006.
[31] F. Losasso and H. Hoppe , “Geometry Clipmaps: Terrain Rendering Using Nested Regular Grids,” Proc. ACM SIGGRAPH '04, pp.769-776, 2004.
[32] T. Nishita , T. Sederberg , and M. Kakimoto , “Ray Tracing Trimmed Rational Surface Patches,” Proc. ACM SIGGRAPH '90, pp. 337-345, 1990.
[33] G. Nürnberger , C. Rössl , H.-P. Seidel , and F. Zeilfelder , “Reconstruction of Volume Data with Quadratic Super Splines,” IEEE Trans. Visualization and Computer Graphics, vol. 10, no. 4, pp.397-409, Oct.-Dec. 2004.
[34] G. Nürnberger and F. Zeilfelder , “Developments in Bivariate Spline Interpolation,” J. Computational and Applied Math., vol. 121, pp. 125-152, 2000.
[35] M. Olano and A. Lastra , “A Shading Language on Graphics Hardware: The PixelFlow Shading System,” Proc. ACM SIGGRAPH, 1998.
[36] H. Prautzsch , W. Boehm , and M. Paluszny , Bézier and B-Spline Techniques. Springer, 2002.
[37] G. Reis , “Hardware Based Bézier Patch Renderer,” Proc. IASTED Visualization, Imaging, and Image Processing (VIIP '05), pp. 622-627, 2005.
[38] M. Sabin , “The Use of Piecewise Forms for the Numerical Representation of Shapes,” dissertation, Hungarian Academy of Science, 1976.
[39] J. Schneider and R. Westermann , “GPU-Friendly High-Quality Terrain Rendering,” J. WSCG, vol. 14, no. 1-3, pp. 49-56, 2006.
[40] M. Schwarz , M. Staginski , and M. Stamminger , “GPU-Based Rendering of PN Triangle Meshes with Adaptive Tessellation,” Proc. Vision, Modeling, and Visualization (VMV '06), pp. 161-168, 2006.
[41] H.-P. Seidel , “An Introduction to Polar Forms,” IEEE Computer Graphics and Applications, vol. 13, no. 1, pp. 38-46, 1993.
[42] L.-J. Shiue , I. Jones , and J. Peters , “A Real-time GPU Subdivision Kernel,” Proc. ACM SIGGRAPH '05, pp. 1010-1015, 2005.
[43] C. Sigg , T. Weyrich , M. Botsch , and M. Gross , “GPU-Based Ray-Casting of Quadratic Surfaces,” Proc. Eurographics, 2006.
[44] T. Sorokina and F. Zeilfelder , “Optimal Quasi-Interpolation by Quadratic $C^{1}$ Splines on Four-Directional Meshes,” Approximation Theory XI: Gatlinburg 2004, C.K. Chui, M. Neamtu, and L.L.Schumaker, eds., pp. 423-438, 2005.
[45] T. Sorokina and F. Zeilfelder , “An Explicit Quasi-Interpolation Scheme Based on $C^{1}$ Quartic Splines on Type-1 Triangulations,” Computer Aided Geometric Design, vol. 25, no. 1, pp. 1-13, 2008.
[46] C. Stoll , S. Gumhold , and H.-P. Seidel , “Incremental Raycasting of Piecewise Quadratic Surfaces on the GPU,” Proc. IEEE Symp. Interactive Ray Tracing (RT '06), pp. 141-150, 2006.
[47] A. Vlachos , J. Peters , C. Boyd , and J. Mitchell , “Curved PN Triangles,” Proc. Symp. Interactive 3D Graphics (I3D '01), pp. 159-166, 2001.
[48] I. Wald , W.R. Mark , J. Günther , S. Boulos , T. Ize , W. Hunt , S.G. Parker , and P. Shirley , “State of the Art in Ray Tracing Animated Scenes,” Proc. Eurographics State of the Art Reports (STAR), 2007.
[49] I. Wald , T.J. Purcell , J. Schmittler , C. Benthin , and P. Slusallek , “Real-time Ray Tracing and Its Use for Interactive Global Illumination,” Proc. Eurographics State of the Art Reports (STAR), 2003.
[50] D. Zorin , T. DeRose , A. Levin , P. Schröder , L. Kobbelt , and W. Sweldens , “Subdivision for Modeling and Animation,” Proc. ACM SIGGRAPH '00, Course 23, 2000.
30 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool