
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
YongLiang Yang, Junho Kim, Feng Luo, ShiMin Hu, Xianfeng Gu, "Optimal Surface Parameterization Using Inverse Curvature Map," IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 5, pp. 10541066, September/October, 2008.  
BibTex  x  
@article{ 10.1109/TVCG.2008.54, author = {YongLiang Yang and Junho Kim and Feng Luo and ShiMin Hu and Xianfeng Gu}, title = {Optimal Surface Parameterization Using Inverse Curvature Map}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {14}, number = {5}, issn = {10772626}, year = {2008}, pages = {10541066}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2008.54}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Optimal Surface Parameterization Using Inverse Curvature Map IS  5 SN  10772626 SP1054 EP1066 EPD  10541066 A1  YongLiang Yang, A1  Junho Kim, A1  Feng Luo, A1  ShiMin Hu, A1  Xianfeng Gu, PY  2008 KW  Computational Geometry and Object Modeling KW  Optimization KW  Partial Differential Equations KW  Discrete Mathematics VL  14 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] M.S. Floater and K. Hormann, “Surface Parameterization: A Tutorial and Survey,” Advances in Multiresolution for Geometric Modelling, Springer, pp. 157186, 2005.
[2] A. Sheffer, E. Praun, and K. Rose, “Mesh Parameterization Methods and Their Applications,” Foundations and Trends in Computer Graphics and Vision, vol. 2, Now Publisher, 2006.
[3] K. Hormann, B. Lévy, and A. Sheffer, “Mesh Parameterization: Theory and Practice,” Proc. ACM SIGGRAPH, 2007.
[4] B. Lévy, S. Petitjean, N. Ray, and J. Maillot, “Least Squares Conformal Maps for Automatic Texture Atlas Generation,” Proc. ACM SIGGRAPH '02, pp. 362371, 2002.
[5] M. Desbrun, M. Meyer, and P. Alliez, “Intrinsic Parameterizations of Surface Meshes,” Computer Graphics Forum, Proc. Eurographics '02, vol. 21, no. 3, pp. 209218, 2002.
[6] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle, “Multiresolution Analysis of Arbitrary Meshes,” Proc. ACM SIGGRAPH, 1995.
[7] U. Pinkall and K. Polthier, “Computing Discrete Minimal Surfaces and Their Conjugates,” Experimental Math., vol. 2, no. 1, pp. 1536, 1993.
[8] M.S. Floater, “Parametrization and Smooth Approximation of Surface Triangulations,” Computer Aided Geometric Design, vol. 14, no. 3, pp. 231250, 1997.
[9] A. Sheffer and E. de Sturler, “Smoothing an Overlay Grid to Minimize Linear Distortion in Texture Mapping,” ACM Trans. Graphics, vol. 21, no. 4, pp. 874890, 2002.
[10] X. Gu and S.T. Yau, “Global Conformal Parameterization,” Proc. First Eurographics Symp. Geometry Processing (SGP '03), pp. 127137, 2003.
[11] M.S. Floater, “Mean Value Coordinates,” Computer Aided Geometric Design, vol. 20, no. 1, pp. 1927, 2003.
[12] K. Hormann and G. Greiner, “Mips: An Efficient Global Parametrization Method,” Curve and Surface Design: SaintMalo 1999, pp. 153162, Vanderbilt Univ. Press, 2000.
[13] P.V. Sander, J. Snyder, S.J. Gortler, and H. Hoppe, “Texture Mapping Progressive Meshes,” Proc. ACM SIGGRAPH '01, pp. 409416, 2001.
[14] O. Sorkine, D. CohenOr, R. Goldenthal, and D. Lischinski, “BoundedDistortion Piecewise Mesh Parameterization,” Proc. 13th IEEE Visualization Conf. (VIS '02), pp. 355362, 2002.
[15] P. Degener, J. Meseth, and R. Klein, “An Adaptable Surface Parameterization Method,” Proc. 12th Int'l Meshing Roundtable (IMR '03), pp. 201213, 2003.
[16] S. Yoshizawa, A.G. Belyaev, and H.P. Seidel, “A Fast and Simple StretchMinimizing Mesh Parameterization,” Proc. IEEE Int'l Conf. Shape Modeling and Applications (SMI '04), pp. 200208, 2004.
[17] E. Zhang, K. Mischaikow, and G. Turk, “FeatureBased Surface Parameterization and Texture Mapping,” ACM Trans. Graphics, vol. 24, no. 1, pp. 127, 2005.
[18] Y. Lee, H.S. Kim, and S. Lee, “Mesh Parameterization with a Virtual Boundary,” Computers and Graphics, vol. 26, no. 5, pp. 677686, 2002.
[19] Z. Karni, C. Gotsman, and S.J. Gortler, “FreeBoundary Linear Parameterization of 3D Meshes in the Presence of Constraints,” Proc. IEEE Int'l Conf. Shape Modeling and Applications (SMI '05), pp. 268277, 2005.
[20] R. Zayer, C. Rössl, and H.P. Seidel, “Setting the Boundary Free: A Composite Approach to Surface Parameterization,” Proc. Third Eurographics Symp. Geometry Processing (SGP '05), H. Pottmann and M. Desbrun, eds., pp. 91100, 2005.
[21] A. Sheffer and E. de Sturler, “Parameterization of Faceted Surfaces for Meshing Using Angle Based Flattening,” Eng. Computers, vol. 17, no. 3, pp. 326337, 2001.
[22] A. Sheffer, B. Lévy, M. Mogilnitsky, and A. Bogomyakov, “ABF++: Fast and Robust Angle Based Flattening,” ACM Trans. Graphics, vol. 24, no. 2, pp. 311330, 2005.
[23] R. Zayer, B. Lévy, and H.P. Seidel, “Linear Angle Based Parameterization,” Proc. Fifth Eurographics Symp. Geometry Processing (SGP '07), pp. 135141, 2007.
[24] W.P. Thurston, Geometry and Topology of ThreeManifolds. Princeton Lecture Notes, 1976.
[25] B. Rodin and D. Sullivan, “The Convergence of Circle Packings to the Riemann Mapping,” J. Differential Geometry, vol. 26, no. 2, pp. 349360, 1987.
[26] C.R. Collins and K. Stephenson, “A Circle Packing Algorithm,” Computational Geometry: Theory and Applications, vol. 25, pp. 233256, 2003.
[27] R.S. Hamilton, “The Ricci Flow on Surfaces,” Math. and General Relativity, vol. 71, pp. 237262, 1988.
[28] B. Chow and F. Luo, “Combinatorial Ricci Flows on Surfaces,” J.Differential Geometry, vol. 63, no. 1, pp. 97129, 2003.
[29] M. Jin, F. Luo, and X. Gu, “Computing Surface Hyperbolic Structure and Real Projective Structure,” Proc. ACM Symp. Solid and Physics Modeling (SPM '06), pp. 105116, 2006.
[30] L. Kharevych, B. Springborn, and P. Schröder, “Discrete Conformal Mappings via Circle Patterns,” ACM Trans. Graphics, vol. 25, no. 2, pp. 412438, 2006.
[31] A.I. Bobenko and B.A. Springborn, “Variational Principles for Circle Patterns and Koebe's Theorem,” Trans. Am. Math. Soc., vol. 356, pp. 659689, 2004.
[32] M. BenChen, C. Gotsman, and G. Bunin, “Conformal Flattening by Curvature Prescription and Metric Scaling,” Computer Graphics Forum, Proc. Eurographics '08, vol. 27, no. 2,to appear.
[33] B.A. Springborn, “Variational Principles for Circle Patterns,” PhD thesis, Technical Univ. of Berlin, 2003.
[34] F. Luo, X. Gu, and J. Dai, Variational Principles for Discrete Surfaces. High Education Press, 2007.
[35] A.P. Witkin and P.S. Heckbert, “Using Particles to Sample and Control Implicit Surfaces,” Proc. ACM SIGGRAPH '94, pp. 269277, 1994.
[36] Y.K. Lai, Q.Y. Zhou, S.M. Hu, J. Wallner, and H. Pottman, “Robust Feature Classification and Editing,” IEEE Trans. Visualization and Computer Graphics, vol. 13, pp. 3445, 2007.
[37] N. Ray, W.C. Li, B. Lévy, A. Sheffer, and P. Alliez, “Periodic Global Parameterization,” ACM Trans. Graphics, vol. 25, no. 4, pp.14601485, 2006.
[38] J. Nocedal and S.J. Wright, Numerical Optimization. Springer, 1999.
[39] X. Gu, S.J. Gortler, and H. Hoppe, “Geometry Images,” ACM Trans. Graphics, vol. 21, no. 3, pp. 355361, 2002.
[40] A. Sheffer and J.C. Hart, “Seamster: Inconspicuous LowDistortion Texture Seam Layout,” Proc. 13th IEEE Visualization Conf. (VIS), 2002.