
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Miao Jin, Junho Kim, Feng Luo, Xianfeng Gu, "Discrete Surface Ricci Flow," IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 5, pp. 10301043, September/October, 2008.  
BibTex  x  
@article{ 10.1109/TVCG.2008.57, author = {Miao Jin and Junho Kim and Feng Luo and Xianfeng Gu}, title = {Discrete Surface Ricci Flow}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {14}, number = {5}, issn = {10772626}, year = {2008}, pages = {10301043}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2008.57}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Discrete Surface Ricci Flow IS  5 SN  10772626 SP1030 EP1043 EPD  10301043 A1  Miao Jin, A1  Junho Kim, A1  Feng Luo, A1  Xianfeng Gu, PY  2008 KW  Geometric algorithms KW  languages KW  and systems KW  Curve KW  surface KW  solid KW  and object representations KW  Applications VL  14 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] G. Perelman, “The Entropy Formula for the Ricci Flow and Its Geometric Applications,” technical report, arXiv.org, Nov. 2002.
[2] G. Perelman, “Ricci Flow with Surgery on ThreeManifolds,” technical report, arXiv.org, Mar. 2003.
[3] G. Perelman, “Finite Extinction Time for the Solutions to the Ricci Flow on Certain ThreeManifolds,” technical report, arXiv.org, July 2003.
[4] R.S. Hamilton, “Three Manifolds with Positive Ricci Curvature,” J.Differential Geometry, vol. 17, pp. 255306, 1982.
[5] B. Lévy, S. Petitjean, N. Ray, and J. Maillot, “Least Squares Conformal Maps for Automatic Texture Atlas Generation,” Proc. ACM SIGGRAPH '02, pp. 362371, 2002.
[6] P. Alliez, M. Meyer, and M. Desbrun, “Interactive Geometry Remeshing,” Proc. ACM SIGGRAPH '02, pp. 347354, 2002.
[7] X. Gu, Y. He, and H. Qin, “Manifold Splines,” Graphical Models, vol. 68, no. 3, pp. 237254, 2006.
[8] R.S. Hamilton, “The Ricci Flow on Surfaces,” Math. and General Relativity, Contemporary Math., Am. Math. Soc., vol. 71, 1988.
[9] W.P. Thurston, Geometry and Topology of ThreeManifolds, Princeton Lecture Notes, 1976.
[10] B. Chow and F. Luo, “Combinatorial Ricci Flows on Surfaces,” J.Differential Geometry, vol. 63, no. 1, pp. 97129, 2003.
[11] M. Jin, F. Luo, and X. Gu, “Computing Surface Hyperbolic Structure and Real Projective Structure,” Proc. ACM Symp. Solid and Physics Modeling, pp. 105116, 2006.
[12] X. Gu, Y. He, M. Jin, F. Luo, H. Qin, and S.T. Yau, “Manifold Splines with Single Extraordinary Point,” Proc. ACM Symp. Solid and Physics Modeling, pp. 6172, 2007.
[13] M.S. Floater and K. Hormann, “Surface Parameterization: A Tutorial and Survey,” Advances in Multiresolution for Geometric Modelling, pp. 157186, 2005.
[14] A. Sheffer, E. Praun, and K. Rose, “Mesh Parameterization Methods and Their Applications,” Foundations and Trends in Computer Graphics and Vision, vol. 2, no. 2, 2006.
[15] M.S. Floater, “Parametrization and Smooth Approximation of Surface Triangulations,” Computer Aided Geometric Design, vol. 14, no. 3, pp. 231250, 1997.
[16] A. Sheffer and E. de Sturler, “Parameterization of Faced Surfaces for Meshing Using Angle Based Flattening,” Eng. with Computers, vol. 17, no. 3, pp. 326337, 2001.
[17] M. Desbrun, M. Meyer, and P. Alliez, “Intrinsic Parameterizations of Surface Meshes,” Computer Graphics Forum (Proc. Eurographics '02), vol. 21, no. 3, pp. 209218, 2002.
[18] A. Sheffer, B. Lévy, M. Mogilnitsky, and A. Bogomyakov, “ABF++: Fast and Robust Angle Based Flattening,” ACM Trans. Graphics, vol. 24, no. 2, pp. 311330, 2005.
[19] X. Gu and S.T. Yau, “Global Conformal Parameterization,” Proc. Symp. Geometry Processing, pp. 127137, 2003.
[20] S.J. Gortler, C. Gotsman, and D. Thurston, “Discrete OneForms on Meshes and Applications to 3D Mesh Parameterization,” Computer Aided Geometric Design, vol. 23, no. 2, pp. 83112, 2005.
[21] N. Ray, W.C. Li, B. Levy, A. Sheffer, and P. Alliez, “Periodic Global Parameterization,” ACM Trans. Graphics, vol. 25, no. 4, pp. 14601485, 2005.
[22] Y. Tong, P. Alliez, D. CohenSteiner, and M. Desbrun, “Designing Quadrangulations with Discrete Harmonic Forms,” Proc. Symp. Geometry Processing, pp. 201210, 2006.
[23] M. Fisher, P. Schröder, M. Desbrun, and H. Hoppe, “Design of Tangent Vector Fields,” ACM Trans. Graphics, vol. 26, no. 3, p. 56, 2007.
[24] K. Stephenson, Introduction to Circle Packing. Cambridge Univ. Press, 2005.
[25] A.I. Bobenko and B.A. Springborn, “Variational Principles for Circle Patterns and Koebe's Theorem,” Trans. Am. Math. Soc., vol. 356, pp. 659689, 2004.
[26] A. Bobenko and P. Schröoder, “Discrete Willmore Flow,” Proc. Symp. Geometry Processing, pp. 101110, 2005.
[27] Y.C. de Verdière, “Un Principe Variationnel pour les Empilements de Cercles [A Variational Principle for Circle Packings],” Inventiones Mathematicae, vol. 104, no. 3, pp. 655669, 1991 (in French).
[28] L. Kharevych, B. Springborn, and P. Schröder, “Discrete Conformal Mappings via Circle Patterns,” ACM Trans. Graphics, vol. 25, no. 2, pp. 412438, 2006.
[29] F. Luo, X. Gu, and J. Dai, Variational Principles for Discrete Surfaces. High Education Press and Int'l Press, 2007.
[30] C. Gotsman, X. Gu, and A. Sheffer, “Fundamentals of Spherical Parameterization for 3D Meshes,” ACM Trans. Graphics, vol. 22, no. 3, pp. 358363, 2003.
[31] E. Praun and H. Hoppe, “Spherical Parametrization and Remeshing,” ACM Trans. Graphics, vol. 22, no. 3, pp. 340349, 2003.
[32] X. Gu, Y. Wang, T.F. Chan, P.M. Thompson, and S.T. Yau, “Genus Zero Surface Conformal Mapping and Its Application to Brain Surface Mapping,” IEEE Trans. Medical Imaging, vol. 23, no. 8, pp. 949958, 2004.
[33] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle, “Conformal Surface Parameterization for Texture Mapping,” IEEE Trans. Visualization and Computer Graphics, vol. 6, no. 2, pp. 181189, Apr.June 2000.
[34] M. Jin, Y. Wang, S.T. Yau, and X. Gu, “Optimal Global Conformal Surface Parameterization,” Proc. IEEE Visualization'04, pp. 267274, 2004.
[35] H. Ferguson, A.P. Rockwood, and J. Cox, “Topological Design of Sculptured Surfaces,” Proc. ACM SIGGRAPH '92, pp. 149156, 1992.
[36] H. Ferguson and A.P. Rockwood, “Multiperiodic Functions for Surface Design,” Computer Aided Geometric Design, vol. 10, nos. 34, pp. 315328, 1993.
[37] C. Grimm and J.F. Hughes, “Parameterizing NHoled Tori,” Proc. IMA Conf. Math. of Surfaces, pp. 1429, 2003.
[38] J. Wallner and H. Pottmann, “Spline Orbifolds,” Curves and Surfaces with Applications in CAGD, pp. 445464, 1997.
[39] B. Chow, “The Ricci Flow on the 2Sphere,” J. Differential Geometry, vol. 33, no. 2, pp. 325334, 1991.
[40] S.H. Weitraub, Differential Forms: A Complement to Vector Calculus. Academic Press, 2007.
[41] W.P. Thurston, ThreeDimensional Geometry and Topology. Princeton Univ. Press, 1997.
[42] A. Hatcher, Algebraic Topology. Cambridge Univ. Press, 2006.
[43] M. Jin, S.T. Yau, and X. Gu, “Computing Geodesic Spectra of Surfaces,” Proc. Symp. Solid and Physical Modeling, pp. 387393, 2007.
[44] X. Gu, S. Wang, J. Kim, Y. Zeng, Y. Wang, H. Qin, and D. Samaras, “Ricci Flow for 3D Shape Analysis,” Proc. 11th IEEE Int'l Conf. Computer Vision, 2007.
[45] H. Wang, Y. He, X. Li, X. Gu, and H. Qin, “Polycube Splines,” ACM Solid and Physical Modeling, pp. 241251, 2007.
[46] C. Carner, M. Jin, X. Gu, and H. Qin, “TopologyDriven Surface Mappings with Robust Feature Alignment,” Proc. IEEE Visualization '05, pp. 543550, 2005.
[47] H.W. Guggenheimer, Differential Geometry. Dover Publications, 1977.