The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.05 - September/October (2008 vol.14)
pp: 1015-1029
Lijun Qu , University of Minnesota, Minneapolis
Gary W. Meyer , University of Minnesota, Minneapolis
ABSTRACT
The properties of the human visual system are taken into account, along with the geometric aspects of an object, in a new surface remeshing algorithm and a new mesh simplification algorithm. Both algorithms have a preprocessing step and are followed by the remeshing or mesh simplification steps. The preprocessing step computes an importance map that indicates the visual masking potential of the visual patterns on the surface. The importance map is then used to guide the remeshing or mesh simplification algorithms. Two different methods are proposed for computing an importance map that indicates the masking potential of the visual patterns on the surface. The first one is based on the Sarnoff visual discrimination metric, and the second one is inspired by the visual masking tool available in the current JPEG2000 standard. Given an importance map, the surface remeshing algorithm automatically distributes few samples to surface regions with strong visual masking properties due to surface texturing, lighting variations, bump mapping, surface reflectance and inter-reflections. Similarly, the mesh simplification algorithm simplifies more aggressively where the light field of an object can hide more geometric artifacts.
INDEX TERMS
Picture/Image Generation, Computational Geometry and Object Modeling
CITATION
Lijun Qu, Gary W. Meyer, "Perceptually Guided Polygon Reduction", IEEE Transactions on Visualization & Computer Graphics, vol.14, no. 5, pp. 1015-1029, September/October 2008, doi:10.1109/TVCG.2008.51
REFERENCES
[1] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Levy, and M. Desbrun, “Anisotropic Polygonal Remeshing,” Proc. ACM SIGGRAPH '03, pp. 485-493, 2003.
[2] P. Alliez, É.C. de Verdiére, O. Devillers, and M. Isenburg, “Isotropic Surface Remeshing,” Proc. Shape Modeling Int'l (SMI '03), pp. 49-58, 2003.
[3] P. Alliez, M. Meyer, and M. Desbrun, “Interactive Geometry Remeshing,” Proc. ACM SIGGRAPH '02, pp. 347-354, 2002.
[4] L. Balmelli, G. Taubin, and F. Bernardini, “Space-Optimized Texture Maps,” Proc. Eurographics '02, pp. 411-420, 2002.
[5] M.R. Bolin and G.W. Meyer, “A Perceptually Based Adaptive Sampling Algorithm,” Proc. ACM SIGGRAPH '98, pp. 299-309, 1998.
[6] N.A. Carr and J.C. Hart, “Painting Detail,” Proc. ACM SIGGRAPH '04, pp. 845-852, 2004.
[7] I. Cheng and P. Boulanger, “Adaptive Online Transmission of 3D TexMesh Using Scale-Space Analysis,” Proc. Second Int'l Symp. 3D Data Processing, Visualization and Transmission (3DPVT '04), pp. 688-695, 2004.
[8] P. Cignoni, C. Montani, C. Rocchini, R. Scopigno, and M. Tarini, “Preserving Attribute Values on Simplified Meshes by Resampling Detail Textures,” The Visual Computer, vol. 15, no. 10, pp. 519-539, 1999.
[9] J. Cohen, M. Olano, and D. Manocha, “Appearance-Preserving Simplification,” Proc. ACM SIGGRAPH '98, pp. 115-122, 1998.
[10] S. Daly, “The Visible Differences Predictor: An Algorithm for the Assessment of Image Fidelity,” Digital Images and Human Vision, MIT Press, pp. 179-206, 1993.
[11] J.A. Ferwerda, S.N. Pattanaik, P. Shirley, and D.P. Greenberg, “A Model of Visual Adaptation for Realistic Image Synthesis,” Proc. ACM SIGGRAPH '96, pp. 249-258, 1996.
[12] J.A. Ferwerda, P. Shirley, S.N. Pattanaik, and D.P. Greenberg, “A Model of Visual Masking for Computer Graphics,” Proc. ACM SIGGRAPH '97, pp. 143-152, 1997.
[13] M. Garland and P.S. Heckbert, “Surface Simplification Using Quadric Error Metrics,” Proc. ACM SIGGRAPH '97, pp. 209-216, 1997.
[14] M. Garland and P.S. Heckbert, “Simplifying Surfaces with Color and Texture Using Quadric Error Metrics,” Proc. IEEE Visualization (VIS '98), pp. 263-269, 1998.
[15] S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M.F. Cohen, “The Lumigraph,” Proc. ACM SIGGRAPH '96, pp. 43-54, 1996.
[16] K.E. Hoff, J. Keyser, M. Lin, D. Manocha, and T. Culver, “Fast Computation of Generalized Voronoi Diagrams Using Graphics Hardware,” Proc. ACM SIGGRAPH '99, pp. 277-286, 1999.
[17] S. Howlett, J. Hamill, and C. O'Sullivan, “An Experimental Approach to Predicting Saliency for Simplified Polygonal Models,” Proc. First Symp. Applied Perception in Graphics and Visualization (APGV '04), pp. 57-64, 2004.
[18] S. Howlett, J. Hamill, and C. O'Sullivan, “Predicting and Evaluating Saliency for Simplified Polygonal Models,” ACM Trans. Applied Perception, vol. 2, no. 3, pp. 286-308, 2007.
[19] Y. Kho and M. Garland, “User-Guided Simplification,” Proc. Symp. Interactive 3D Graphics (SI3D '03), pp. 123-126, 2003.
[20] J. Krueger and R. Westermann, “Linear Algebra Operators for GPU Implementation of Numerical Algorithms,” Proc. ACM SIGGRAPH '03, pp. 908-916, 2003.
[21] C.H. Lee, A. Varshney, and D.W. Jacobs, “Mesh Saliency,” Proc. ACM SIGGRAPH '05, pp. 659-666, 2005.
[22] G.E. Legge and J.M. Foley, “Contrast Masking in Human Vision,” J. Optical Soc. America, vol. 7, pp. 1458-1471, 1980.
[23] M. Levoy and P. Hanrahan, “Light Field Rendering,” Proc. ACM SIGGRAPH '96, pp. 31-42, 1996.
[24] P. Lindstrom, “Model Simplification Using Image and Geometry-Based Metrics,” PhD thesis, Georgia Inst. of Tech nology, 2000.
[25] P. Lindstrom and G. Turk, “Image-Driven Simplification,” ACM Trans. Graphics, vol. 19, no. 3, pp. 204-241, 2000.
[26] S.P. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. Information Theory, vol. IT-28, no. 2, pp. 129-137, 1982.
[27] J. Lubin, “A Visual Discrimination Model for Imaging System Design and Evaluation,” Vision Models for Target Detection and Recognition. World Scientific, pp. 245-283, 1995.
[28] D.P. Luebke and B. Hallen, “Perceptually-Driven Simplification for Interactive Rendering,” Proc. 12th Eurographics Workshop Rendering Techniques (EGRW '01), pp. 223-234, 2001.
[29] C. O'Sullivan, S. Howlett, Y. Morvan, R. McDonnell, and K. O'Conor, “Perceptually Adaptive Graphics,” Proc. Eurographics '04, State of the Art Reports, pp. 141-164, 2004.
[30] E. Pojar and D. Schmalstieg, “User-Controlled Creation of Multiresolution Meshes,” Proc. Symp. Interactive 3D Graphics (SI3D '03), pp. 127-130, 2003.
[31] L. Qu and G.W. Meyer, “Perceptually Driven Interactive Geometry Remeshing,” Proc. Symp. Interactive 3D Graphics and Games (I3D '06), pp. 199-206, 2006.
[32] L. Qu and G.W. Meyer, “Faceting Artifact Analysis for Computer Graphics,” Proc. 15th Pacific Conf. Computer Graphics and Applications (Pacific Graphics '07), pp. 419-422, 2007.
[33] L. Qu, X. Yuan, M.X. Nguyen, G.W. Meyer, B. Chen, and J.E. Windsheimer, “Perceptually Guided Rendering of Textured Point-Based Models,” Proc. IEEE/Eurographics Symp. Point-Based Graphics (PBG '06), pp. 95-102, 2006.
[34] G. Ramanarayanan, J. Ferwerda, B. Walter, and K. Bala, “Visual Equivalence: Towards a New Standard for Image Fidelity,” ACM Trans. Graphics, vol. 26, no. 3, p. 76, 2007.
[35] M. Ramasubramanian, S.N. Pattanaik, and D.P. Greenberg, “A Perceptually Based Physical Error Metric for Realistic Image Synthesis,” Proc. ACM SIGGRAPH '99, pp. 73-82, 1999.
[36] P.V. Sander, S.J. Gortler, J. Snyder, and H. Hoppe, “Signal-Specialized Parametrization,” Proc. 13th Eurographics Workshop Rendering Techniques (EGRW '02), pp. 87-98, 2002.
[37] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 Still Image Compression Standard,” IEEE Signal Processing Magazine, vol. 18, pp. 36-58, 2001.
[38] W.A. Stokes, J.A. Ferwerda, B. Walter, and D.P. Greenberg, “Perceptual Illumination Components: A New Approach to Efficient, High Quality Global Illumination Rendering,” Proc. ACM SIGGRAPH '04, pp. 742-749, 2004.
[39] V. Surazhsky and C. Gotsman, “Explicit Surface Remeshing,” Proc. Eurographics/ACM SIGGRAPH Symp. Geometry Processing (SGP '03), pp. 20-30, 2003.
[40] G. Tewari, J. Snyder, P. Sander, S. Gortler, and H. Hoppe, “Signal-Specialized Parameterization for Piecewise Linear Reconstruction,” Proc. Eurographics/ACM SIGGRAPH Symp. Geometry Processing (SGP '04), pp. 55-64, 2004.
[41] G. Turk, “Re-Tiling Polygonal Surfaces,” Proc. ACM SIGGRAPH '92, pp. 55-64, 1992.
[42] V. Volevich, K. Myszkowski, A. Khodulev, and E.A. Kopylov, “Using the Visual Differences Predictor to Improve Performance of Progressive Global Illumination Computation,” ACM Trans. Graphics, vol. 19, no. 2, pp. 122-161, 2000.
[43] G.K. Wallace, “The JPEG Still Picture Compression Standard,” Comm. ACM, vol. 34, no. 4, pp. 30-44, 1991.
[44] B. Walter, S.N. Pattanaik, and D.P. Greenberg, “Using Perceptual Texture Masking for Efficient Image Synthesis,” Computer Graphics Forum, vol. 21, no. 3, pp. 393-400, 2002.
[45] A.B. Watson, “The Cortex Transform: Rapid Computation of Simulated Neural Images,” Computer Vision, Graphics, and Image Processing, vol. 39, no. 3, pp. 311-327, 1987.
[46] B. Watson, A. Friedman, and A. McGaffey, “Measuring and Predicting Visual Fidelity,” Proc. ACM SIGGRAPH '01, pp. 213-220, 2001.
[47] N. Williams, D. Luebke, J.D. Cohen, M. Kelley, and B. Schubert, “Perceptually Guided Simplification of Lit, Textured Meshes,” Proc. Symp. Interactive 3D Graphics (SI3D '03), pp. 113-121, 2003.
[48] D.N. Wood, D.I. Azuma, K. Aldinger, B. Curless, T. Duchamp, D.H. Salesin, and W. Stuetzle, “Surface Light Fields for 3D Photography,” Proc. ACM SIGGRAPH '00, pp. 287-296, 2000.
[49] W. Zeng, S. Daly, and S. Lei, “An Overview of the Visual Optimization Tools in JPEG 2000,” Signal Processing: Image Comm., vol. 17, pp. 85-104, 2002.
[50] E. Zhang and G. Turk, “Visibility-Guided Simplification,” Proc. IEEE Visualization (VIS '02), pp. 267-274, 2002.
24 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool