This Article 
 Bibliographic References 
 Add to: 
Shape Deformation Using a Skeleton to Drive Simplex Transformations
May/June 2008 (vol. 14 no. 3)
pp. 693-706
This paper presents a novel skeleton-based method for deforming meshes (using an approximate skeleton, rather than a precise medial axis). The significant difference from previous skeleton-based methods is that the latter use the skeleton to control movement of vertices whereas we use it to control the simplices defining the model. By doing so, errors that occur near joints in other methods can be spread over the whole mesh, using an optimization process, resulting in smooth transitions near joints of the skeleton. By controlling simplices, our method has the advantage that no vertex weights need to be defined on the bones, which is a tedious requirement in previous skeleton-based methods. Our method can also easily be extended to control deformation by moving a few chosen line segments or vertices embedded in the object, rather than a skeleton.

[1] H.-B. Yan, S.-M. Hu, and R. Martin, “Skeleton-Based Shape Deformation Using Simplex Transformations,” Proc. 24th Computer Graphics Int'l Conf. (CGI '06), Advances in Computer Graphics, pp.66-77, 2006.
[2] T.W. Sederberg and S.R. Parry, “Free-Form Deformation of Solid Geometric Models,” Computer Graphics (Proc. ACM SIGGRAPH '86), vol. 20, no. 4, pp. 151-160, 1986.
[3] S. Coquillart, “Extended Free-Form Deformation: A Sculpturing Tool for 3D Geometric Modeling,” ComputerGraphics (Proc. ACM SIGGRAPH '90,) vol. 24, no. 4, pp. 187-196, 1990.
[4] F. Lazarus, S. Coquillart, and P. Jancène, “Axial Deformations: An Intuitive Deformation Technique,” Computer Aided Design, vol. 26, no. 8, pp. 607-613, 1994.
[5] K. Singh and E. Fiume, “Wires: A Geometric Deformation Technique,” Proc. ACM SIGGRAPH '98, pp. 405-414, 1998.
[6] D. Zorin, P. Schöder, and W. Sweldens, “Interactive Multiresolution Mesh Editing,” Proc. ACM SIGGRAPH '97, pp. 249-268, 1997.
[7] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel, “Interactive Multi-Resolution Modeling on Arbitrary Meshes,” Proc. ACM SIGGRAPH'98, pp. 105-114, 1998.
[8] I. Guskov, W. Sweldens, and P. Schroder, “Multiresolution Signal Processing for Meshes,” Proc. SIGGRAPH '99, pp. 325-334, 1999.
[9] M. Alexa, “Differential Coordinates for Local Mesh Morphing and Deformation,” The Visual Computer, vol. 19, no. 2, pp. 105-114, 2003.
[10] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rössl, and H.-P. Seidel, “Differential Coordinates for Interactive Mesh Editing,” Proc. Shape Modeling Int'l, pp. 181-190, 2004.
[11] O. Sorkine, Y. Lipman, D. Cohen-Or, M. Alexa, C. Rössl, and H.-P. Seidel, “Laplacian Surface Editing,” Proc. Eurographics/ACM SIGGRAPH Symp. Geometry Processing, pp. 179-188, 2004.
[12] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum, “Mesh Editing with Poisson-Based Gradient Field Manipulation,” ACM Trans. Graphics (Proc. ACM SIGGRAPH '04,) vol. 23, no. 3, pp. 644-651, 2004.
[13] K. Zhou, J. Huang, J. Snyder, X.-G. Liu, H.-J. Bao, B.-N. Guo, and H.-Y. Shum, “Large Mesh Deformation Using the Volumetric Graph Laplacian,” ACM Trans. Graphics (Proc. ACM SIGGRAPH '05), vol. 24, no. 3, pp. 496-503, 2005.
[14] L. Shi, Y. Yu, N. Bell, and W.-W. Feng, “A Fast Multigrid Algorithm for Mesh Deformation,” ACM Trans. Graphics (Proc. ACM SIGGRAPH '06), vol. 25, no. 3, pp. 1108-1117, 2006.
[15] J. Huang, X. Shi, X. Liu, K. Zhou, L.-Y. Wei, S.-H. Teng, H. Bao, B. Guo, and H.-Y. Shum, “Subspace Gradient Domain Mesh Deformation,” ACM Trans. Graphics (Proc. ACM SIGGRAPH '06), vol. 25, no. 3, pp. 1126-1134, 2006.
[16] K. Shoemake and T. Duff, “Matrix Animation and Polar Decomposition,” Proc. Conf. Graphics Interface, pp. 258-264, 1992.
[17] M. Alexa, D. Cohen-Or, and D. Levin, “As-Rigid-as-Possible Shape Interpolation,” Proc. ACM SIGGRAPH '00, pp. 157-165, 2000.
[18] R.-W. Sumner and J. Popovic, “Deformation Transfer for Triangle Meshes,” ACM Trans. Graphics (Proc. ACM SIGGRAPH '04), vol. 23, no. 3, pp. 399-405, 2004.
[19] R.-W. Sumner, M. Zwicker, C. Gotsman, and J. Popovic, “Mesh-Based Inverse Kinematics,” ACM Trans. Graphics (Proc. ACM SIGGRAPH '05), vol. 24, no. 3, pp. 488-495, 2005.
[20] K.G. Der, R.W. Sumner, and J. Popović, “Inverse Kinematics for Reduced Deformable Models,” ACMTrans. Graphics (Proc. ACM SIGGRAPH '06), vol. 25, no. 3, pp. 1174-1179, 2006.
[21] M. Botsch, R. Sumner, M. Pauly, and M. Gross, “Deformation Transfer for Detail-Preserving Surface Editing,” Proc. Vision, Modeling and Visualization '06, pp. 357-364, 2006.
[22] Alias|Wavefront, Learning Maya, Version 3.0. Alias, 2000.
[23] Softimage, Softimage 3D, Animating, User's Guide. Softimage, 2002.
[24] J.-P. Lewis, M. Cordner, and N. Fong, “Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-Driven Deformation,” Proc. ACM SIGGRAPH '00, pp. 165-172, 2000.
[25] N. Magnenat-Thalmann, R. Laperriere, and D. Thalmann, “Joint-Dependent Local Deformations for Hand Animation and Object Grasping,” Proc. Graphics Interface '88, pp. 26-33, 1988.
[26] A. Mohr, L. Tokheim, and M. Gleicher, “Direct Manipulation of Interactive Character Skins,” Proc. Symp. Interactive 3D Graphics, pp. 27-30, 2003.
[27] B. Allen, B. Curless, and Z. Popovic, “Articulated Body Deformation from Range Scan Data,” ACMTrans. Graphics (Proc. ACM SIGGRAPH '02), vol. 21, no. 3, pp. 612-619, 2002.
[28] D.L. James and C.D. Twigg, “Skinning Mesh Animations,” ACM Trans. Graphics, (Proc.ACM SIGGRAPH '05), vol. 24, no. 3, pp. 399-407, 2005.
[29] X.-H.C. Wang and C. Phillips, “Multi-Weight Enveloping: Least-SquaresApproximation Techniques for Skin Animation,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp. 129-138, 2002.
[30] T. Rhee, J. Lewis, and U. Neumann, “Real-Time Weighted Pose-Space Deformation on the GPU,” Computer Graphics Forum, vol. 25, no. 3, pp. 439-448, 2006.
[31] P.G. Kry, D.L. James, and D.K. Pai, “Eigenskin: Real Time Large Deformation Character Skinning in Hardware,” Proc. ACM SIGGRAPH '02, pp. 253-260, 2002.
[32] L. Wade and R.E. Parent, “Automated Generation of Control Skeletons for Use in Animation,” The Visual Computer, vol. 18, no. 2, pp. 97-110, 2002.
[33] P.-C. Liu, F.-C. Wu, W.-C. Ma, R.-H. Liang, and M. Ouhyoung, “Automatic Animation Skeleton Construction Using Repulsive Force Field,” Proc. Pacific Graphics, pp. 409-413, 2003.
[34] A. Verroust and F. Lazarus, “Extracting Skeletal Curves from 3D Scattered Data,” The Visual Computer, vol. 16, no. 1, pp. 15-25, 2000.
[35] S. Katz, G. Leifman, and A. Tal, “Mesh Segmentation Using Feature Point and Core Extraction,” The Visual Computer, vol. 21, no. 8-10, pp. 649-658, 2005.
[36] T.-Y. Lee, Y.-S. Wang, and T.-G. Chen, “Segmenting a Deforming Mesh into Near-Rigid Components,” The Visual Computer, vol. 22, no. 9-10, pp. 729-739, 2006.
[37] Y.-K. Lai, Q.-Y. Zhou, S.-M. Hu, and R.R. Martin, “Feature Sensitive Mesh Segmentation,” Proc. ACM Symp. Solid and Physical Modeling, pp. 7-16, 2006.
[38] S. Berretti, A.D. Bimbo, and P. Pala, “Partitioning of 3D Meshes Using Reeb Graphs,” Proc. 18th Int'l Conf. Pattern Recognition, pp.19-22, 2006.
[39] S. Katz and A. Tal, “Hierarchical Mesh Decomposition Using Fuzzy Clustering and Cuts,” ACMTrans. Graphics (Proc. ACM SIGGRAPH '03), vol. 22, no. 3, pp. 954-961, 2003.
[40] J.-M. Lien, J. Keyser, and N.M. Amato, “Simultaneous Shape Decomposition and Skeletonization,” Proc. ACM Solid and Physical Modeling Symp., pp. 219-228, 2005.
[41] N.D. Cornea, D. Silver, X. Yuan, and R. Balasubramanian, “Computing Hierarchical Curve-Skeletons of 3D Objects,” The Visual Computer, vol. 21, no. 11, pp. 945-955, 2005.
[42] X.-T. Li, T.-W. Woon, T.-S. Tan, and Z.-Y. Huang, “Decomposing Polygon Meshes for Interactive Applications,” Proc. ACM Symp. Interactive 3D Graphics '01, pp. 35-42, 2001.
[43] D. Reniers and A. Telea, “Skeleton-Based Hierarchical Shape Segmentation,” Proc. IEEE Int'l Conf. Shape Modeling and Applications, pp. 179-188, 2007.
[44] N.D. Cornea, D. Silver, and P. Min, “Curve-Skeleton Properties, Applications, and Algorithms,” IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 3, pp. 530-548, May/June 2007.
[45] J. Bloomenthal, “Medial-Based Vertex Deformation,” Proc. ACM SIGGRAPH '02/Eurographics Symp. Computer Animation, pp. 147-151, 2002.
[46] S. Yoshizawa, A. Belyaev, and H.-P. Seidel, “Skeleton-Based Variational Mesh Deformations,” Computer Graphics Forum, vol. 26, no. 3, pp. 255-264, 2007.
[47] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, and J. Rodgers, “Scape: Shape Completion and Animation of People,” ACM Trans. Graphics (Proc. ACM SIGGRAPH '05), vol. 24, no. 3, pp. 408-416, 2005.
[48] R.Y. Wang, K. Pulli, and J. Popović, “Real-Time Enveloping with Rotational Regression,” ACM Trans. Graphics, (Proc. ACM SIGGRAPH '07), vol. 26, no. 3, pp. 73-1-73-9, 2007.
[49] O. Weber, O. Sorkine, Y. Lipman, and C. Gotsman, “Context-Aware Skeletal Shape Deformation,” Computer Graphics Forum (Proc. Eurographics '07), vol. 26, no. 3, pp. 265-273, 2007.
[50] H.-B. Yan, S.-M. Hu, and R.R. Martin, “Morphing Based on Strain Field Interpolation,” Computer Animation and Virtual Worlds, vol. 15, nos. 3-4, pp. 443-452, 2004.
[51] Y. Kho and M. Garland, “Sketching Mesh Deformations,” Proc. Symp. Interactive 3D Graphics and Games, pp. 147-154, 2005.

Index Terms:
Shape Deformation, Skeleton, Simplex Transformation, animation
Han-Bing Yan, Shimin Hu, Ralph R. Martin, Yong-Liang Yang, "Shape Deformation Using a Skeleton to Drive Simplex Transformations," IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 3, pp. 693-706, May-June 2008, doi:10.1109/TVCG.2008.28
Usage of this product signifies your acceptance of the Terms of Use.