
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Michael Steffen, Sean Curtis, Robert M. Kirby, Jennifer K. Ryan, "Investigation of SmoothnessIncreasing AccuracyConserving Filters for Improving Streamline Integration through Discontinuous Fields," IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 3, pp. 680692, May/June, 2008.  
BibTex  x  
@article{ 10.1109/TVCG.2008.9, author = {Michael Steffen and Sean Curtis and Robert M. Kirby and Jennifer K. Ryan}, title = {Investigation of SmoothnessIncreasing AccuracyConserving Filters for Improving Streamline Integration through Discontinuous Fields}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {14}, number = {3}, issn = {10772626}, year = {2008}, pages = {680692}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2008.9}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Investigation of SmoothnessIncreasing AccuracyConserving Filters for Improving Streamline Integration through Discontinuous Fields IS  3 SN  10772626 SP680 EP692 EPD  680692 A1  Michael Steffen, A1  Sean Curtis, A1  Robert M. Kirby, A1  Jennifer K. Ryan, PY  2008 KW  streamline integration KW  finite element VL  14 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] D.H. Laidlaw, R.M. Kirby, C.D. Jackson, J.S. Davidson, T.S. Miller, M. da Silva, W.H. Warren, and M.J. Tarr, “Comparing 2D Vector Field Visualization Methods: A User Study,” IEEE Trans. Visualization and Computer Graphics, vol. 11, no. 1, pp. 5970, Jan./Feb. 2005.
[2] D. Weiskopf and G. Erlebacher, “Overview of Flow Visualization,” The Visualization Handbook, C.D. Hansen and C.R. Johnson, eds., Elsevier, 2005.
[3] C.W. Gear, “Solving Ordinary Differential Equations with Discontinuities,” ACM Trans. Math. Software, vol. 10, no. 1, pp.2344, 1984.
[4] J. Bramble and A. Schatz, “Higher Order Local Accuracy by Averaging in the Finite Element Method,” Math. Computation, vol. 31, pp. 94111, 1977.
[5] J. Ryan, C.W. Shu, and H. Atkins, “Extension of a PostProcessing Technique for the Discontinuous Galerkin Method for Hyperbolic Equations with Application to an Aeroacoustic Problem,” SIAM J.Scientific Computing, vol. 26, pp. 821843, 2005.
[6] S. Curtis, R.M. Kirby, J.K. Ryan, and C.W. Shu, “PostProcessing for the Discontinuous Galerkin Method over NonUniform Meshes,” SIAM J. Scientific Computing, to be published.
[7] J. Ryan and C.W. Shu, “On a OneSided PostProcessing Technique for the Discontinuous Galerkin Methods,” Methods and Applications of Analysis, vol. 10, pp. 295307, 2003.
[8] E. Tufte, The Visual Display of Quantitative Information. Graphics Press, 1983.
[9] J.V. Wijk, “Spot Noise Texture Synthesis for Data Visualization,” Computer Graphics, vol. 25, no. 4, pp. 309318, 1991.
[10] B. Cabral and L. Leedom, “Imaging Vector Fields Using Line Integral Convolution,” Computer Graphics, vol. 27, pp. 263272, 1993.
[11] G. Turk, “Generating Textures on Arbitrary Surfaces Using ReactionDiffusion Textures,” Computer Graphics, vol. 25, no. 4, pp. 289298, 1991.
[12] A. Witkin and M. Kass, “ReactionDiffusion Textures,” Computer Graphics, vol. 25, no. 4, pp. 299308, 1991.
[13] D. Kenwright and G. Mallinson, “A 3D Streamline Tracking Algorithm Using Dual Stream Functions,” Proc. IEEE Conf. Visualization (VIS '92), pp. 6268, 1992.
[14] D. Watanabe, X. Mao, K. Ono, and A. Imamiya, “GazeDirected Streamline Seeding,” ACM Int'l Conf. Proc. Series, vol. 73, p. 170, 2004.
[15] G. Turk and D. Banks, “ImageGuided Streamline Placement,” Proc. ACM SIGGRAPH '96, pp. 453460, 1996.
[16] B. Jobard and W. Lefer, “Creating EvenlySpaced Streamlines of Arbitrary Density,” Proc. Eighth Eurographics Workshop Visualization in Scientific Computing, 1997.
[17] X. Ye, D. Kao, and A. Pang, “Strategy for Seeding 3D Streamlines,” Proc. IEEE Conf. Visualization (VIS), 2005.
[18] A. Mebarki, P. Alliez, and O. Devillers, “Farthest Point Seeding for Efficient Placement of Streamlines,” Proc. IEEE Conf. Visualization (VIS), 2005.
[19] D. Stalling and H.C. Hege, “Fast and Resolution Independent Line Integral Convolution,” Proc. ACM SIGGRAPH '95, pp.249256, 1995.
[20] C. Teitzel, R. Grosso, and T. Ertl, “Efficient and Reliable Integration Methods for Particle Tracing in Unsteady Flows on Discrete Meshes,” Proc. Eighth Eurographics Workshop Visualization in Scientific Computing, pp. 4956, citeseer.ist.psu.eduteitzel97efficient.html , 1997.
[21] Z. Liu and R.J. Moorhead, “Accelerated Unsteady Flow Line Integral Convolution,” IEEE Trans. Visualization and Computer Graphics, vol. 11, no. 2, pp. 113125, Mar./Apr. 2005.
[22] J. Parker, R. Kenyon, and D. Troxel, “Comparison of Interpolating Methods for Image Resampling,” IEEE Trans. Medical Imaging, vol. 2, no. 1, pp. 3139, 1983.
[23] H. Hou and H. Andrews, “Cubic Splines for Image Interpolation and Digital Filtering,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 26, pp. 508517, 1978.
[24] A. Entezari, R. Dyer, and T. Möller, “Linear and Cubic Box Splines for the Body Centered Cubic Lattice,” Proc. IEEE Conf. Visualization (VIS '04), pp. 1118, 2004.
[25] D. Mitchell and A. Netravali, “Reconstruction Filters in ComputerGraphics,” Proc. ACM SIGGRAPH '88, pp. 221228, 1988.
[26] G. Nürnberger, L. Slatexchumaker, and F. Zeilfelder, Local Lagrange Interpolation by Bivariate C1 Cubic Splines. Vanderbilt Univ., 2001.
[27] P. Sablonniere, “Positive Spline Operators and Orthogonal Splines,” J. Approximation Theory, vol. 52, no. 1, pp. 2842, 1988.
[28] Y. Tong, S. Lombeyda, A. Hirani, and M. Desbrun, “Discrete Multiscale Vector Field Decomposition,” ACM Trans. Graphics, vol. 22, no. 3, pp. 445452, 2003.
[29] I. Ihm, D. Cha, and B. Kang, “Controllable Local Monotonic Cubic Interpolation in Fluid Animations: Natural Phenomena and Special Effects,” Computer Animation and Virtual Worlds, vol. 16, no. 34, pp. 365375, 2005.
[30] T. Möller, R. Machiraju, K. Mueller, and R. Yagel, “Evaluation and Design of Filters Using a Taylor Series Expansion,” IEEE Trans. Visualization and Computer Graphics, vol. 3, no. 2, pp. 184199, June 1997.
[31] T. Möller, K. Mueller, Y. Kurzion, R. Machiraju, and R. Yagel, “Design of Accurate and Smooth Filters for Function and Derivative Reconstruction,” Proc. IEEE Symp. Volume Visualization (VVS '98), pp. 143151, 1998.
[32] D. Stalling, “Fast TextureBased Algorithms for Vector Field Visualization,” PhD dissertation, KonradZuseZentrum für Informationstechnik, 1998.
[33] D. Stalling and H.C. Hege, “Fast and Resolution Independent Line Integral Convolution,” Proc. ACM SIGGRAPH '95, pp. 249256, 1995.
[34] V. Thomée, “High Order Local Approximations to Derivatives inthe Finite Element Method,” Math. Computation, vol. 31, pp.652660, 1977.
[35] I. Shoenberg, “Contributions to the Problem of Approximation ofEquidistant Data by Analytic Functions, Parts A, B,” Quarterly Applied Math., vol. 4, pp. 4599, 112141, 1946.
[36] C.W.S.B. Cockburn, M. Luskin, and E. Suli, “Enhanced Accuracy by PostProcessing for Finite Element Methods for Hyperbolic Equations,” Math. Computation, vol. 72, pp. 577606, 2003.
[37] M. Mock and P. Lax, “The Computation of Discontinuous Solutions of Linear Hyperbolic Equations,” Comm. Pure and Applied Math., vol. 18, pp. 423430, 1978.
[38] D.G.W. Cai and C.W. Shu, “On OneSided Filters for Spectral Fourier Approximations of Discontinuous Functions,” SIAM J. Numerical Analysis, vol. 29, pp. 905916, 1992.
[39] P.G. Ciarlet, “The Finite Element Method for Elliptic Problems,” SIAM Classics in Applied Math., Soc. of Industrial and Applied Math., 2002.
[40] P.G. Ciarlet, “Interpolation Error Estimates for the Reduced HsiehCloughTocher Triangle,” Math. Computation, vol. 32, no. 142, pp. 335344, 1978.
[41] J.H. Bramble and M. Zlámal, “Triangular Elements in the FiniteElement Method,” Math. Computation, vol. 24, no. 112, pp. 809820, 1970.
[42] P. Alfeld and L. Schumaker, “Smooth Finite Elements Based on CloughTocher Triangle Splits,” Numerishe Mathematik, vol. 90, pp.597616, 2002.
[43] M. jun Lai and L. Schumaker, “MacroElements and Stable Local Bases for Splines on CloughTocher Triangulations,” Numerishe Mathematik, vol. 88, pp. 105119, 2001.
[44] O. Davydov and L.L. Schumaker, “On Stable Local Bases for Bivariate Polynomial Spline Spaces,” Constructive Approximations, vol. 18, pp. 87116, 2004.
[45] T.J.R. Hughes, The Finite Element Method. Prentice Hall, 1987.
[46] G.E. Karniadakis and S.J. Sherwin, Spectral/HP Element Methods for CFD. Oxford Univ. Press, 1999.
[47] E. Hairer, S.P. Norrsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, second revised ed. Springer, 1993.
[48] R. Burden and J. Faires, Numerical Analysis. PWS, 1993.
[49] C. Canuto and A. Quarteroni, “Approximation Results for Orthogonal Polynomials in Sobolev Spaces,” Math. Computation, vol. 38, no. 157, pp. 6786, 1982.
[50] E. Murman and K. Powell, “Trajectory Integration in Vertical Flows,” AIAA J., vol. 27, no. 7, pp. 982984, 1988.
[51] G. Scheuermann, X. Tricoche, and H. Hagen, “C1Interpolation forVector Field Topology Visualization,” Proc. IEEE Conf. Visualization (VIS '99), pp. 271278, 1999.
[52] R.L. Burden and J.D. Faires, Numerical Analysis, fifth ed. PWS, 1993.
[53] I. Babuska and J.T. Oden, “Verification and Validation in Computational Engineering and Science: Basic Concepts,” Computer Methods in Applied Mechanics and Eng., vol. 193, no. 3638, pp. 40574066, 2004.