
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Avneesh Sud, Erik Andersen, Sean Curtis, Ming C. Lin, Dinesh Manocha, "RealTime Path Planning in Dynamic Virtual Environments Using Multiagent Navigation Graphs," IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 3, pp. 526538, May/June, 2008.  
BibTex  x  
@article{ 10.1109/TVCG.2008.27, author = {Avneesh Sud and Erik Andersen and Sean Curtis and Ming C. Lin and Dinesh Manocha}, title = {RealTime Path Planning in Dynamic Virtual Environments Using Multiagent Navigation Graphs}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {14}, number = {3}, issn = {10772626}, year = {2008}, pages = {526538}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2008.27}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  RealTime Path Planning in Dynamic Virtual Environments Using Multiagent Navigation Graphs IS  3 SN  10772626 SP526 EP538 EPD  526538 A1  Avneesh Sud, A1  Erik Andersen, A1  Sean Curtis, A1  Ming C. Lin, A1  Dinesh Manocha, PY  2008 KW  Computational Geometry and Object Modeling KW  Geometric algorithms KW  languages KW  and systems KW  ThreeDimensional Graphics and Realism KW  Animation KW  Virtual reality VL  14 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] F. Aurenhammer, “Voronoi Diagrams: A Survey of a Fundamental Geometric Data Structure,” ACM Computing Surveys, vol. 23, no. 3, pp. 345405, Sept. 1991.
[2] D. Baraff and A. Witkin, “Physically Based Modeling,” ACM SIGGRAPH Course Notes, 2001.
[3] O.B. Bayazit, J.M. Lien, and N.M. Amato, “Better Group Behaviors in Complex Environments with Global Roadmaps,” Proc. Eighth Int'l Conf. Simulation and Synthesis of Living Systems (Alife '02), pp. 362370, 2002.
[4] M. Bennewitz, W. Burgard, and S. Thrun, “Finding Solvable Priority Schemes for Decoupled Path Planning Techniques for Teams of Mobile Robots,” Robotics and Autonomous Systems, vol. 41, nos. 23, pp. 8999, 2002.
[5] J. Champagne and W. Tang, “RealTime Simulation of Crowds Using Voronoi Diagrams,” EG UK Theory and Practice of Computer Graphics, pp. 195201, 2005.
[6] H. Choset and J. Burdick, “Sensor Based Motion Planning: TheHierarchical Generalized Voronoi Graph,” Algorithms for Robot Motion and Manipulation. A K Peters, pp. 4761, 1996.
[7] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, 2005.
[8] O.C. Cordeiro, A. Braun, C.B. Silveria, S.R. Musse, and G.G. Cavalheiro, “Concurrency on Social Forces Simulation Model,” Proc. First Int'l Workshop Crowd Simulation, 2005.
[9] M. Denny, “Solving Geometric Optimization Problems Using Graphics Hardware,” Proc. Eurographics '03, pp. 441451, 2003.
[10] I. Fischer and C. Gotsman, “Fast Approximation of High Order Voronoi Diagrams and Distance Transforms on the GPU,” Technical Report CS TR0705, Harvard Univ., 2005.
[11] M. Foskey, M. Garber, M. Lin, and D. Manocha, “A VoronoiBased Hybrid Planner,” Proc. IEEE/RSJ Int'l Conf. Intelligent Robots and Systems (IROS '01), vol. 1, pp. 5560, 2001.
[12] J. Funge, X. Tu, and D. Terzopoulos, “Cognitive Modeling: Knowledge, Reasoning and Planning for Intelligent Characters,” Proc. ACM SIGGRAPH '99, pp. 2938, 1999.
[13] P. Glardon, R. Boulic, and D. Thalmann, “Dynamic Obstacle Clearing for RealTime Character Animation,” Computer Graphics Int'l, vol. 22, no. 6, pp. 399414, 2005.
[14] L. Guibas, C. Holleman, and L. Kavraki, “A Probabilistic Roadmap Planner for Flexible Objects with a Workspace MedialAxisBased Sampling Approach,” Proc. IEEE/RSJ Int'l Conf. Intelligent Robots and Systems (IROS '99), pp. 254259, 1999.
[15] D. Helbing, L. Buzna, A. Johansson, and T. Werner, “SelfOrganized Pedestrian Crowd Dynamics: Experiments, Simulations and Design Solutions,” Transportation Science, pp. 124, 2005.
[16] D. Helbing, L. Buzna, and T. Werner, “SelfOrganized Pedestrian Crowd Dynamics and Design Solutions,” Traffic Forum 12, 2003.
[17] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha, “Fast Computation of Generalized Voronoi Diagrams Using Graphics Hardware,” Proc. ACM SIGGRAPH '99, pp. 277286, 1999.
[18] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha, “Interactive Motion Planning Using Hardware Accelerated Computation of Generalized Voronoi Diagrams,” Proc. IEEE Int'l Conf. Robotics and Automation (ICRA '00), pp. 29312937, 2000.
[19] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha, “Fast and Simple 2D Geometric Proximity Queries Using Graphics Hardware,” Proc. ACM Symp. Interactive 3D Graphics, pp. 145148, 2001.
[20] S.P. Hoogendoorn, S. Luding, P. Bovy, M. Schrecklenberg, and D. Wolf, Traffic and Granular Flow. Springer, 2000.
[21] F. Lamarche and S. Donikian, “Crowd of Virtual Humans: ANewApproach for RealTime Navigation in Complex and Structured Environments,” Computer Graphics Forum, vol. 23, no. 3, pp. 509518, 2004.
[22] J.C. Latombe, Robot Motion Planning. Kluwer Academic Publishers, 1991.
[23] T.T. Li and H.C. Chou, “Motion Planning for a Crowd of Robots,” Proc. IEEE Int'l Conf. Robotics and Automation (ICRA '03), vol. 3, pp. 42154221, 2003.
[24] C. Loscos, D. Marchal, and A. Meyer, “Intuitive Crowd Behaviour in Dense Urban Environments Using Local Laws,” Proc. Theory and Practice of Computer Graphics (TPCG '03), pp.122129, 2003.
[25] MASSIVE, http:/www.massivesoftware.com, 2006.
[26] S.R. Musse and D. Thalmann, “A Model of Human Crowd Behavior: Group InterRelationship and Collision Detection Analysis,” Computer Animation and Simulation, pp. 3951, 1997.
[27] A. Okabe, B. Boots, and K. Sugihara, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, 1992.
[28] L.E. Parker, “Designing Control Laws for Cooperative Agent Teams,” Proc. IEEE Int'l Conf. Robotics and Automation (ICRA '93), pp. 582587, 1993.
[29] N. Pelechano, K. O'Brien, B. Silverman, and N. Badler, “Crowd Simulation Incorporating Agent Psychological Models, Roles andCommunication,” Proc. First Int'l Workshop Crowd Simulation, 2005.
[30] J. Pettre, J.P. Laumond, and D. Thalmann, “A Navigation Graph for RealTime Crowd Animation on Multilayered and Uneven Terrain,” Proc. First Int'l Workshop Crowd Simulation, 2005.
[31] C.W. Reynolds, “Flocks, Herds, and Schools: A Distributed Behavioral Model,” Computer Graphics (Proc. ACM SIGGRAPH '87), vol. 21, pp. 2534, 1987.
[32] M. Schreckkenberg and S.D. Sharma, Pedestrian and Evacuation Dynamics. Springer, 2001.
[33] G. Still, “Crowd Dynamics,” PhD dissertation, Univ. of Warwick, 2000.
[34] A. Sud, E. Andersen, S. Curtis, M. Lin, and D. Manocha, “RealTime Path Planning for Virtual Agents in Dynamic Environments,” Proc. IEEE Virtual Reality Conf. (VR '07), pp. 9198, 2007.
[35] A. Sud, N. Govindaraju, R. Gayle, I. Kabul, and D. Manocha, “FastProximity Computation among Deformable Models Using Discrete Voronoi Diagrams,” ACM Trans. Graphics (Proc. ACM SIGGRAPH '06), vol. 25, no. 3, pp. 11441153, 2006.
[36] A. Sud, N. Govindaraju, R. Gayle, and D. Manocha, “Interactive 3D Distance Field Computation Using Linear Factorization,” Proc.ACM Symp. Interactive 3D Graphics and Games, pp. 117124, 2006.
[37] A. Sud, M.A. Otaduy, and D. Manocha, “DiFi: Fast 3D Distance Field Computation Using Graphics Hardware,” Computer Graphics Forum (Proc. Eurographics '04), vol. 23, no. 3, pp. 557566, 2004.
[38] M. Sung, M. Gleicher, and S. Chenney, “Scalable Behaviors for Crowd Simulation,” Computer Graphics Forum, vol. 23, no. 3, pp.519528, Sept. 2004.
[39] M. Sung, L. Kovar, and M. Gleicher, “Fast and Accurate GoalDirected Motion Synthesis for Crowds,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation (SCA '05), pp. 291300, 2005.
[40] D. Thalmann, C. O'Sullivan, P. Ciechomski, and S. Dobbyn, “Populating Virtual Environments with Crowds,” Eurographics'06 Tutorial Notes, 2006.
[41] A. Treuille, S. Cooper, and Z. Popovic, “Continuum Crowds,” Proc. ACM SIGGRAPH '06, pp. 11601168, 2006.
[42] X. Tu and D. Terzopoulos, “Artificial Fishes: Physics, Locomotion, Perception, Behavior,” Proc. ACM SIGGRAPH '94, pp. 4350, 1994.
[43] J. Vleugels and M.H. Overmars, “Approximating Voronoi Diagrams of Convex Sites in Any Dimension,” Int'l J. Computational Geometry and Applications, vol. 8, pp. 201222, 1998.
[44] S.A. Wilmarth, N.M. Amato, and P.F. Stiller, “MAPRM: AProbabilistic Roadmap Planner with Sampling on the Medial Axis of the Free Space,” Proc. IEEE Int'l Conf. Robotics and Automation (ICRA '99), pp. 10241031, 1999.
[45] G.K. Zipf, Human Behavior and the Principle of Least Effort. AddisonWesley, 1949.