This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Generic Remeshing of 3D Triangular Meshes with Metric-Dependent Discrete Voronoi Diagrams
March/April 2008 (vol. 14 no. 2)
pp. 369-381
In this paper, we propose a generic framework for 3D surface remeshing. Based on a metric-driven Discrete Voronoi Diagram construction, our output is an optimized 3D triangular mesh with a user defined vertex budget. Our approach can deal with a wide range of applications, from high quality mesh generation to shape approximation. By using appropriate metric constraints the method generates isotropic or anisotropic elements. Based on point-sampling, our algorithm combines the robustness and theoretical strength of Delaunay criteria with the efficiency of entirely discrete geometry processing . Besides the general described framework, we show experimental results using isotropic, quadric-enhanced isotropic and anisotropic metrics which prove the efficiency of our method on large meshes, for a low computational cost.

[1] S. Valette and J.-M. Chassery, “Approximated Centroidal Voronoi Diagrams for Uniform Polygonal Mesh Coarsening,” Proc. Eurographics '04, vol. 23, no. 3, pp. 381-389, 2004.
[2] P. Alliez, G. Ucelli, C. Gotsman, and M. Attene, “Recent Advances in Remeshing of Surfaces,” State-of-the-Art Report of the AIM@SHAPE EU Network, 2005.
[3] D.P. Luebke, “A Developer's Survey of Polygonal Simplification Algorithms,” IEEE Computer Graphics and Applications, vol. 21, no. 3, pp. 24-35, May/June 2001.
[4] D. Cohen-Steiner, P. Alliez, and M. Desbrun, “Variational Shape Approximation,” ACM Trans. Graphics, special issue for SIGGRAPH, 2004.
[5] S. Valette, I. Kompatsiaris, and J.-M. Chassery, “Adaptive Polygonal Mesh Simplification with Discrete Centroidal Voronoi Diagrams,” Proc. Second Int'l Conf. Machine Intelligence (ICMI '05), pp. 655-662, 2005.
[6] I. Boier-Martin, H. Rushmeier, and J. Jin, “Parameterization of Triangle Meshes over Quadrilateral Domains,” Proc. Symp. Geometry Processing, 2004.
[7] M. Garland, A. Willmott, and P.S. Heckbert, “Hierarchical Face Clustering on Polygonal Surfaces,” Proc. Symp. Interactive 3D Graphics, 2001.
[8] P. Lindstrom, “Out-of-Core Simplification of Large Polygonal Models,” Proc. ACM SIGGRAPH '00, pp. 259-262, 2000.
[9] S. Schaefer and J. Warren, “Adaptive Vertex Clustering Using Octrees,” Proc. SIAM Geometric Design and Computing, 2003.
[10] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Snoeyink, “Large Mesh Simplification Using Processing Sequences,” Proc. IEEE Visualization Conf., 2003.
[11] J. Wu and L. Kobbelt, “A Stream Algorithm for the Decimation of Massive Meshes,” Graphics Interface Proc., pp. 185-192, 2003.
[12] P. Alliez, M. Meyer, and M. Desbrun, “Interactive Geometry Remeshing,” ACM Trans. Graphics, special issue for ACM SIGGRAPH, vol. 21, no. 3, pp. 347-354, 2002.
[13] P. Alliez, É.C. de Verdière, O. Devillers, and M. Isenburg, “Isotropic Surface Remeshing,” Proc. Shape Modeling Int'l, pp. 49-58, 2003.
[14] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Levy, and M. Desbrun, “Anisotropic Polygonal Remeshing,” ACM Trans. Graphics, special issue for SIGGRAPH, pp. 485-493, 2003.
[15] X. Gu, S. Gortler, and H. Hoppe, “Geometry Images,” Proc. ACM SIGGRAPH '02, pp. 355-361, 2002.
[16] V. Surazhsky, P. Alliez, and C. Gotsman, “Isotropic Remeshing of Surfaces: A Local Parameterization Approach,” Proc. 12th Int'l Meshing Roundtable, 2003.
[17] V. Surazhsky and C. Gotsman, “Explicit Surface Remeshing,” Proc. ACM/Eurographics Symp. Geometry Processing, June 2003.
[18] J. Lötjönen, P.-J. Reissman, I.E. Magnin, J. Nenonen, and T. Katila, “A Triangulation Method of an Arbitrary Point Set for Biomagnetic Problems,” IEEE Trans. Magnetics, vol. 34, no. 4, pp. 2228-2233, 1998.
[19] G. Turk, “Re-Tiling Polygonal Surfaces,” Computer Graphics, vol. 26, no. 2, pp. 55-64, 1992.
[20] G. Peyré and L. Cohen, “Geodesic Remeshing Using Front Propagation,” Proc. IEEE Workshop Variational, Geometric and Level Set Methods in Computer Vision, 2003.
[21] O. Sifri, A. Sheffer, and C. Gotsman, “Geodesic-Based Surface Remeshing,” Proc. Int'l Meshing Roundtable, 2003.
[22] Q. Du, M.D. Gunzburger, and L. Ju, “Constrained Centroidal Voronoi Tessellations for Surfaces,” SIAM J. Scientific Computing, vol. 24, no. 5, pp. 1488-1506, 2003.
[23] F. Aurenhammer, “Voronoi Diagrams—A Survey of a Fundamental Geometric Data Structure,” ACM Computing Surveys, vol. 23, no. 3, pp. 345-405, 1991.
[24] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi Tesselations: Applications and Algorithms,” SIAM Rev., vol. 41, no. 4, 1999.
[25] S.P. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. Information Theory, vol. 28, pp. 129-137, Mar. 1982.
[26] Q. Du and D. Wang, “Anisotropic Centroidal Voronoi Tessellations and Their Applications,” SIAM J. Scientific Computing, vol. 26, pp. 737-761, 2005.
[27] F. Labelle and J.R. Shewchuk, “Anisotropic Voronoi Diagrams and Guaranteed-Quality Anisotropic Mesh Generation,” Proc. 19th Ann. Symp. Computational Geometry, pp. 191-200, 2003.
[28] M. Garland and P.S. Heckbert, ”Surface Simplification Using Quadric Error Metrics,“ Computer Graphics, vol. 31, pp. 209-216, 1997.
[29] P.S. Heckbert and M. Garland, “Optimal Triangulation and Quadric-Based Surface Simplification,” J. Computational Geometry: Theory and Applications, vol. 14, nos. 1-3, pp. 49-65, Nov. 1999.
[30] F. Cazals and M. Pouget, “Estimating Differential Quantities Using Polynomial Fitting of Osculating Jets,” Computer Aided Geometric Design, vol. 22, no. 2, pp. 121-146, 2005.
[31] R.B. Simpson, “Anisotropic Mesh Transformations and Optimal Error Control,” Applied Numerical Math., vol. 14, nos. 1-3, pp. 183-198, 1994.
[32] P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: Measuring Error on Simplified Surfaces,” Computer Graphics Forum, vol. 17, no. 2, pp. 167-174, 1998.
[33] P. Frey and H. Borouchaki, “Surface Mesh Evaluation,” Proc. Sixth Int'l Meshing Roundtable, pp. 363-374, 1997.

Index Terms:
Approximation of surfaces and contours, Global optimization, Hierarchy and geometric transformations
Citation:
Sebastien Valette, Jean Marc Chassery, R?my Prost, "Generic Remeshing of 3D Triangular Meshes with Metric-Dependent Discrete Voronoi Diagrams," IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 2, pp. 369-381, March-April 2008, doi:10.1109/TVCG.2007.70430
Usage of this product signifies your acceptance of the Terms of Use.