
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Alireza Entezari, Dimitri Van De Ville, Torsten Möller, "Practical Box Splines for Reconstruction on the Body Centered Cubic Lattice," IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 2, pp. 313328, March/April, 2008.  
BibTex  x  
@article{ 10.1109/TVCG.2007.70429, author = {Alireza Entezari and Dimitri Van De Ville and Torsten Möller}, title = {Practical Box Splines for Reconstruction on the Body Centered Cubic Lattice}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {14}, number = {2}, issn = {10772626}, year = {2008}, pages = {313328}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70429}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Practical Box Splines for Reconstruction on the Body Centered Cubic Lattice IS  2 SN  10772626 SP313 EP328 EPD  313328 A1  Alireza Entezari, A1  Dimitri Van De Ville, A1  Torsten Möller, PY  2008 KW  Spline and piecewise polynomial approximation KW  Spline and piecewise polynomial interpolation KW  Splines KW  Signal processing KW  Reconstruction KW  Finite volume methods VL  14 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] R.N. Bracewell, The Fourier Transform and Its Applications, McGrawHill Series in Electrical Eng. Circuits and Systems, third ed. McGrawHill, 1986.
[2] G. Burns, Solid State Physics. Academic Press, 1985.
[3] I. Carlbom, “Optimal Filter Design for Volume Reconstruction and Visualization,” Proc. IEEE Conf. Visualization (VIS '93), pp. 5461, Oct. 1993.
[4] H. Carr, T. Möller, and J. Snoeyink, “Artifacts Caused by Simplicial Subdivision,” IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 2, pp. 231242, Mar./Apr. 2006.
[5] L. Condat and D. Van De Ville, “QuasiInterpolating Spline Models for HexagonallySampled Data,” IEEE Trans. Image Processing, vol. 16, no. 5, pp. 11951206, May 2007.
[6] J.H Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, third ed. Springer, 1999.
[7] B. Csébfalvi, “Prefiltered Gaussian Reconstruction for HighQuality Rendering of Volumetric Data Sampled on a BodyCentered Cubic Grid,” Proc. IEEE Visualization Conf. (VIS '05), pp.311318, 2005.
[8] M. Dæhlen, “On the Evaluation of Box Splines,” Mathematical Methods in Computer Aided Geometric Design, pp. 167179, 1989.
[9] C. de Boor, K. Höllig, and S. Riemenschneider, “Box Splines,” Applied Mathematical Sciences, vol. 98, Springer, 1993.
[10] C. de Boor, “On the Evaluation of Box Splines,” Numerical Algorithms, vol. 5, nos. 14, pp. 523, 1993.
[11] D.E. Dudgeon and R.M. Mersereau, Multidimensional Digital Signal Processing, first ed. Prentice Hall, 1984.
[12] S.C. Dutta Roy and B. Kumar, “Digital Differentiators,” Handbook of Statistics, vol. 10, Elsevier, pp. 159205, 1993.
[13] A. Entezari, R. Dyer, and T. Möller, “Linear and Cubic Box Splines for the Body Centered Cubic Lattice,” Proc. IEEE Visualization Conf. (VIS '04), pp. 1118, Oct. 2004.
[14] A. Entezari, T. Meng, S. Bergner, and T. Möller, “A Granular Three Dimensional Multiresolution Transform,” Proc. Eurographics/IEEEVGTC Symp. Visualization (EuroVis '06), pp. 267274, May 2006.
[15] T.C. Hales, “Cannonballs and Honeycombs,” Notices of the AMS, vol. 47, no. 4, pp. 440449, Apr. 2000.
[16] R.G. Keys, “Cubic Convolution Interpolation for Digital Image Processing,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 29, no. 6, pp. 11531160, Dec. 1981.
[17] L. Kobbelt, “Stable Evaluation of Box Splines,” Numerical Algorithms, vol. 14, no. 4, pp. 377382, 1997.
[18] H.R. Künsch, E. Agrell, and F.A. Hamprecht, “Optimal Lattices for Sampling,” IEEE Trans. Information Theory, vol. 51, no. 2, pp. 634647, Feb. 2005.
[19] T. Theußl, O. Mattausch, T. Möller, and E. Gröller, “Reconstruction Schemes for High Quality Raycasting of the BodyCentered Cubic Grid,” Technical Report TR18620211, Inst. Computer Graphics and Algorithms, Vienna Univ. of Tech nology, Dec. 2002.
[20] T. Theußl, T. Möller, and E. Gröller, “Optimal Regular Volume Sampling,” Proc. IEEE Visualization Conf. (VIS '01), pp. 9198, Oct. 2001.
[21] S.R. Marschner and R.J. Lobb, “An Evaluation of Reconstruction Filters for Volume Rendering,” Proc. IEEE Conf. Visualization (VIS'94), pp. 100107, 1994.
[22] J.H. McClellan, “The Design of TwoDimensional Digital Filters by Transformations,” Proc. Seventh Ann. Princeton Conf. Information Sciences and Systems, pp. 247251, 1973.
[23] T. Meng, B. Smith, A. Entezari, A.E. Kirkpatrick, D. Weiskopf, L. Kalantari, and T. Möller, “On Visual Quality of Optimal 3D Sampling and Reconstruction,” Proc. 33rd Graphics Interface Conf. (GI '07), pp. 265272, May 2007.
[24] R.M. Mersereau, “The Processing of Hexagonally Sampled TwoDimensional Signals,” Proc. IEEE, vol. 67, no. 6, pp. 930949, June 1979.
[25] D.P. Mitchell and A.N. Netravali, “Reconstruction Filters in Computer Graphics,” Computer Graphics (Proc. ACM SIGGRAPH '88), vol. 22, pp. 221228, Aug. 1988.
[26] T. Möller, R. Machiraju, K. Mueller, and R. Yagel, “A Comparison of Normal Estimation Schemes,” Proc. IEEE Visualization Conf. (VIS '97), pp. 1926, Oct. 1997.
[27] T. Möller, K. Mueller, Y. Kurzion, R. Machiraju, and R. Yagel, “Design of Accurate and Smooth Filters for Function and Derivative Reconstruction,” Proc. IEEE Symp. Volume Visualization (VVS '98), pp. 143151, Oct. 1998.
[28] A.V. Oppenheim and R.W. Schafer, DiscreteTime Signal Processing. Prentice Hall, 1989.
[29] D.P. Petersen and D. Middleton, “Sampling and Reconstruction of WaveNumberLimited Functions in $N\hbox{}{\rm Dimensional}$ ${\rm Euclidean}\;{\rm Spaces}$ ,” Information and Control, vol. 5, no. 4, pp.279323, Dec. 1962.
[30] G. Strang and G.J. Fix, “A Fourier Analysis of the Finite Element Variational Method,” Constructive Aspects of Functional Analysis, pp. 796830, 1971.
[31] P. Thévenaz, T. Blu, and M. Unser, “Interpolation Revisited,” IEEE Trans. Medical Imaging, vol. 19, no. 7, pp. 739758, July 2000.
[32] D. Van De Ville, T. Blu, M. Unser, W. Philips, I. Lemahieu, and R. Van de Walle, “HexSplines: A Novel Spline Family for Hexagonal Lattices,” IEEE Trans. Image Processing, vol. 13, no. 6, pp. 758772, June 2004.
[33] Wikipedia, Minkowski Addition, http://en.wikipedia.org/wikiMinkowski_addition, 2007 , June 2007.