The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.01 - January/February (2008 vol.14)
pp: 213-230
ABSTRACT
This survey reviews the recent advances in linear variational mesh deformation techniques. These methods were developed for editing detailed high-resolution meshes, like those produced by scanning real-world objects. The challenge of manipulating such complex surfaces is three-fold: the deformation technique has to be sufficiently fast, robust, and intuitive and easy to control to be useful for interactive applications. An intuitive, and thus predictable, deformation tool should provide physically plausible and aesthetically pleasing surface deformations, which in particular requires its geometric details to be preserved. The methods we survey generally formulate surface deformation as a global variational optimization problem that addresses the differential properties of the edited surface. Efficiency and robustness are achieved by linearizing the underlying objective functional, such that the global optimization amounts to solving a sparse linear system of equations. We review the different deformation energies and detail preservation techniques that were proposed in the recent years, together with the various techniques to rectify the linearization artifacts. Our goal is to provide the reader with a systematic classification and comparative description of the different techniques, revealing the strengths and weaknesses of each approach in common editing scenarios.
INDEX TERMS
mesh editing, linear optimization, discrete differential operators
CITATION
Mario Botsch, Olga Sorkine, "On Linear Variational Surface Deformation Methods", IEEE Transactions on Visualization & Computer Graphics, vol.14, no. 1, pp. 213-230, January/February 2008, doi:10.1109/TVCG.2007.1054
REFERENCES
[1] B. Aksoylu, A. Khodakovsky, and P. Schröder, “Multilevel Solvers for Unstructured Surface Meshes,” SIAM J. Scientific Computing, vol. 26, no. 4, pp. 1146-1165, 2005.
[2] M. Alexa, “Local Control for Mesh Morphing,” Proc. Int'l Conf. Shape Modeling and Applications (SMI '01), pp. 209-215, 2001.
[3] M. Alexa, “Differential Coordinates for Local Mesh Morphing and Deformation,” The Visual Computer, vol. 19, no. 2, pp. 105-114, 2003.
[4] O.K.-C. Au, C.-L. Tai, L. Liu, and H. Fu, “Dual Laplacian Editing for Meshes,” IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 3, pp. 386-395, May-June 2006.
[5] K.-J. Bathe, Finite Element Procedures. Prentice Hall, 1995.
[6] D. Bechmann, “Space Deformation Models Survey,” Computers and Graphics, vol. 18, no. 4, pp. 571-586, 1994.
[7] M. Botsch, D. Bommes, and L. Kobbelt, “Efficient Linear System Solvers for Mesh Processing,” IMA Math. of Surfaces XI, pp. 62-83, 2005.
[8] M. Botsch and L. Kobbelt, “A Robust Procedure to Eliminate Degenerate Faces from Triangle Meshes,” Proc. Sixth Int'l Fall Workshop Vision, Modeling, and Visualization (VMV '01), pp. 402-410, 2001.
[9] M. Botsch and L. Kobbelt, “Multiresolution Surface Representation Based on Displacement Volumes,” Computer Graphics Forum (Proc. Eurographics), vol. 22, no. 3, pp. 483-491, 2003.
[10] M. Botsch and L. Kobbelt, “An Intuitive Framework for Real-Time Freeform Modeling,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 23, no. 3, pp. 630-634, 2004.
[11] M. Botsch and L. Kobbelt, “A Remeshing Approach to Multiresolution Modeling,” Proc. Eurographics/ACM SIGGRAPH Symp. Geometry Processing, pp. 189-196, 2004.
[12] M. Botsch, M. Pauly, M. Gross, and L. Kobbelt, “PriMo: Coupled Prisms for Intuitive Surface Modeling,” Proc. Eurographics/ACM SIGGRAPH Symp. Geometry Processing, pp. 11-20, 2006.
[13] M. Botsch, M. Pauly, C. Rössl, S. Bischoff, and L. Kobbelt, “Geometric Modeling Based on Triangle Meshes,” Eurographics Course Notes, 2006.
[14] M. Botsch, R. Sumner, M. Pauly, and M. Gross, “Deformation Transfer for Detail-Preserving Surface Editing,” Proc. 11th Int'l Fall Workshop Vision, Modeling, and Visualization (VMV '06), pp. 357-364, 2006.
[15] G. Celniker and D. Gossard, “Deformable Curve and Surface Finite-Elements for Free-Form Shape Design,” Proc. ACM SIGGRAPH '91, pp. 257-266, 1991.
[16] F. Cirak, M. Ortiz, and P. Schröder, “Subdivision Surfaces: A New Paradigm for Thin-Shell Finite-Element Analysis,” Int'l J. Numerical Methods in Eng., vol. 47, no. 12, pp. 2039-2072, 2000.
[17] F. Cirak, M. Scott, P. Schröder, M. Ortiz, and E. Antonsson, “Integrated Modeling, Finite-Element Analysis, and Design for Thin-Shell Structures Using Subdivision,” Computer-Aided Design, vol. 34, no. 2, pp. 137-148, 2002.
[18] M. Desbrun, M. Meyer, P. Schröder, and A.H. Barr, “Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow,” Proc. ACM SIGGRAPH '99, pp. 317-324, 1999.
[19] M.P. do Carmo, Differential Geometry of Curves and Surfaces. Prentice Hall, 1976.
[20] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle, “Multiresolution Analysis of Arbitrary Meshes,” Proc. ACM SIGGRAPH '95, pp. 173-182, 1995.
[21] R. Fattal, D. Lischinski, and M. Werman, “Gradient Domain High Dynamic Range Compression,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 21, no. 3, pp. 249-256, 2002.
[22] D. Forsey and R. Bartels, “Hierarchical B-spline refinement,” Proc. ACM SIGGRAPH, pp. 205-212, 1988.
[23] H. Fu, O.K.-C. Au, and C.-L. Tai, “Effective Derivation of Similarity Transformations for Implicit Laplacian Mesh Editing,” Computer Graphics Forum, vol. 26, no. 1, pp. 34-45, 2007.
[24] M. Garland, “Multiresolution Modeling: Survey & Future Opportunities,” Eurographics State of the Art Report, 1999.
[25] G.H. Golub and C.F. Van Loan, Matrix Computations, third ed. Johns Hopkins Univ. Press, 1996.
[26] G. Greiner and J. Loos, “Data Dependent Thin Plate Energy and Its Use in Interactive Surface Modeling,” Computer Graphics Forum (Proc. Eurographics), vol. 15, no. 3, pp. 175-185, 1996.
[27] E. Grinspun, Y. Gingold, J. Reisman, and D. Zorin, “Computing Discrete Shape Operators on General Meshes,” Computer Graphics Forum (Proc. Eurographics), vol. 25, no. 3, pp. 547-556, 2006.
[28] H.W. Guggenheimer, Differential Geometry. McGraw-Hill, 1963.
[29] I. Guskov, W. Sweldens, and P. Schröder, “Multiresolution Signal Processing for Meshes,” Proc. ACM SIGGRAPH, pp. 325-334, 1999.
[30] I. Guskov, K. Vidimče, W. Sweldens, and P. Schröder, “Normal Meshes,” Proc. ACM SIGGRAPH, pp. 95-102, 2000.
[31] J. Huang, X. Shi, X. Liu, K. Zhou, L.-Y. Wei, S. Teng, H. Bao, B. Guo, and H.-Y. Shum, “Subspace Gradient Domain Mesh Deformation,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 25, no. 3, pp. 1126-1134, 2006.
[32] T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice Hall, 1987.
[33] T. Igarashi, T. Moscovich, and J.F. Hughes, “As-Rigid-As-Possible Shape Manipulation,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 24, no. 3, pp.1134-1141, 2005.
[34] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel, “Interactive Multi-Resolution Modeling on Arbitrary Meshes,” Proc. ACM SIGGRAPH, pp. 105-114, 1998.
[35] L. Kobbelt, J. Vorsatz, and H.-P. Seidel, “Multiresolution Hierarchies on Unstructured Triangle Meshes,” Computational Geometry: Theory and Applications, vol. 14, pp. 5-24, 1999.
[36] V. Kraevoy and A. Sheffer, “Mean-Value Geometry Encoding,” Int'l J. Shape Modeling, vol. 12, no. 1, pp. 29-46, 2006.
[37] A. Lee, H. Moreton, and H. Hoppe, “Displaced Subdivision Surfaces,” Proc. ACM SIGGRAPH, pp. 85-94, 2000.
[38] S. Lee, “Interactive Multiresolution Editing of Arbitrary Meshes,” Computer Graphics Forum, vol. 18, no. 3, pp. 73-82, 1999.
[39] Y. Lipman, D. Cohen-Or, R. Gal, and D. Levin, “Volume and Shape Preservation via Moving Frame Manipulation,” ACM Trans. Graphics, vol. 26, no. 1, 2007.
[40] Y. Lipman, O. Sorkine, M. Alexa, D. Cohen-Or, D. Levin, C. Rössl, and H.-P. Seidel, “Laplacian Framework for Interactive Mesh Editing,” Int'l J. Shape Modeling, vol. 11, no. 1, pp. 43-62, 2005.
[41] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rössl, and H.-P. Seidel, “Differential Coordinates for Interactive Mesh Editing,” Proc. Int'l Conf. Shape Modeling (SMI '04), pp. 181-190, 2004.
[42] Y. Lipman, O. Sorkine, D. Levin, and D. Cohen-Or, “Linear Rotation-Invariant Coordinates for Meshes,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 24, no. 3, pp. 479-487, 2005.
[43] M. Marinov, M. Botsch, and L. Kobbelt, “GPU-Based Multiresolution Deformation Using Approximate Normal Field Reconstruction,” J. Graphics Tools, vol. 12, no. 1, pp. 27-46, 2007.
[44] M. Marinov and L. Kobbelt, “Automatic Generation of Structure Preserving Multiresolution Models,” Computer Graphics Forum (Proc. Eurographics), vol. 24, no. 3, pp. 479-486, 2005.
[45] M. Meyer, M. Desbrun, P. Schröder, and A.H. Barr, “Discrete Differential-Geometry Operators for Triangulated 2-Manifolds,” Visualization and Math. III, H.-C. Hege and K. Polthier, eds., pp. 35-57, 2003.
[46] T. Milliron, R.J. Jensen, R. Barzel, and A. Finkelstein, “A Framework for Geometric Warps and Deformations,” ACM Trans. Graphics, vol. 21, no. 1, pp. 20-51, 2002.
[47] H.P. Moreton and C.H. Séquin, “Functional Optimization for Fair Surface Design,” Proc. SIGGRAPH, pp. 167-176, 1992.
[48] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson, “Physically Based Deformable Models in Computer Graphics,” Computer Graphics Forum, vol. 25, no. 4, pp. 809-836, 2006.
[49] A. Nealen, O. Sorkine, M. Alexa, and D. Cohen-Or, “A Sketch-Based Interface for Detail-Preserving Mesh Editing,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 24, no. 3, pp. 1142-1147, 2005.
[50] P. Pérez, M. Gangnet, and A. Blake, “Poisson Image Editing,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 22, no. 3, pp.313-318, 2003.
[51] U. Pinkall and K. Polthier, “Computing Discrete Minimal Surfaces and Their Conjugates,” Experimental Math., vol. 2, no. 1, pp. 15-36, 1993.
[52] T. Popa, D. Julius, and A. Sheffer, “Material-Aware Mesh Deformations,” Proc. IEEE Int'l Conf. Shape Modeling and Applications (SMI '06). pp. 141-152, 2006.
[53] A. Sheffer and V. Kraevoy, “Pyramid Coordinates for Morphing and Deformation,” Proc. Second Int'l Symp. 3D Data Processing, Visualization, and Transmission (3DPVT '04), pp. 68-75, 2004.
[54] L. Shi, Y. Yu, N. Bell, and W.-W. Feng, “A Fast Multigrid Algorithm for Mesh Deformation,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 25, no. 3, pp. 1108-1117, 2006.
[55] K. Shoemake and T. Duff, “Matrix Animation and Polar Decomposition,” Proc. Conf. Graphics Interface, pp. 258-264, 1992.
[56] O. Sorkine, “Differential Representations for Mesh Processing,” Computer Graphics Forum, vol. 25, no. 4, pp. 789-807, 2006.
[57] O. Sorkine, “Laplacian Mesh Processing,” PhD dissertation, School of Computer Science, Tel Aviv Univ., 2006.
[58] O. Sorkine and D. Cohen-Or, “Least-Squares Meshes,” Proc. IEEE Int'l Conf. Shape Modeling and Applications (SMI '04), pp. 191-199, 2004.
[59] O. Sorkine, D. Cohen-Or, and S. Toledo, “High-Pass Quantization for Mesh Encoding,” Proc. Eurographics/ACM SIGGRAPH Symp. Geometry Processing, pp. 42-51, 2003.
[60] O. Sorkine, Y. Lipman, D. Cohen-Or, M. Alexa, C. Rössl, and H.-P. Seidel, “Laplacian Surface Editing,” Proc. Eurographics/ACM SIGGRAPH Symp. Geometry Processing, pp. 179-188, 2004.
[61] R.W. Sumner and J. Popović, “Deformation Transfer for Triangle Meshes,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 23, no. 3, pp. 399-405, 2004.
[62] R.W. Sumner, M. Zwicker, and C. Gotsman, “Mesh-Based Inverse Kinematics,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 24, no. 3, pp. 488-495, 2005.
[63] G. Taubin, “A Signal Processing Approach to Fair Surface Design,” Proc. ACM SIGGRAPH '95, pp. 351-358, 1995.
[64] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically Deformable Models,” Proc. ACM SIGGRAPH '87, pp. 205-214, 1987.
[65] B. Thomaszewski, M. Wacker, and W. Strasser, “A Consistent Bending Model for Cloth Simulation with Corotational Subdivision Finite Elements,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp. 107-116, 2006.
[66] W. von Funck, H. Theisel, and H.-P. Seidel, “Vector Field Based Shape Deformations,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 25, no. 3, pp.1118-1125, 2006.
[67] M. Wardetzky, M. Bergou, D. Harmon, D. Zorin, and E. Grinspun, “Discrete Quadratic Curvature Energies,” Computer Aided Geometric Design, to appear, 2007.
[68] W. Welch and A. Witkin, “Variational Surface Modeling,” Proc. ACM SIGGRAPH '92, pp. 157-166, 1992.
[69] D. Xu, H. Zhang, Q. Wang, and H. Bao, “Poisson Shape Interpolation,” Proc. Ninth ACM Symp. Solid and Physical Modeling (SPM '05), pp. 267-274, 2005.
[70] G. Xu, “Discrete Laplace-Beltrami Operators and Their Convergence,” Computer-Aided Geometric Design, vol. 21, no. 8, pp. 767-784, 2004.
[71] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum, “Mesh Editing with Poisson-Based Gradient Field Manipulation,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 23, no. 3, pp. 644-651, 2004.
[72] R. Zayer, C. Rössl, Z. Karni, and H.-P. Seidel, “Harmonic Guidance for Surface Deformation,” Computer Graphics Forum (Proc. Eurographics), pp. 601-609, 2005.
[73] K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, and H.-Y. Shum, “Large Mesh Deformation Using the Volumetric Graph Laplacian,” ACM Trans. Graphics (Proc. ACM SIGGRAPH), vol. 24, no. 3, pp. 496-503, 2005.
[74] D. Zorin, P. Schröder, and W. Sweldens, “Interactive Multiresolution Mesh Editing,” Proc. ACM SIGGRAPH '97, pp. 259-268, 1997.
28 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool