
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
YingLiang Ma, Kurt Saetzler, "A Parallelized Surface Extraction Algorithm for Large Binary Image Data Sets Based on an Adaptive 3D Delaunay Subdivision Strategy," IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 1, pp. 160172, January/February, 2008.  
BibTex  x  
@article{ 10.1109/TVCG.2007.1057, author = {YingLiang Ma and Kurt Saetzler}, title = {A Parallelized Surface Extraction Algorithm for Large Binary Image Data Sets Based on an Adaptive 3D Delaunay Subdivision Strategy}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {14}, number = {1}, issn = {10772626}, year = {2008}, pages = {160172}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.1057}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  A Parallelized Surface Extraction Algorithm for Large Binary Image Data Sets Based on an Adaptive 3D Delaunay Subdivision Strategy IS  1 SN  10772626 SP160 EP172 EPD  160172 A1  YingLiang Ma, A1  Kurt Saetzler, PY  2008 KW  isosurface extraction KW  adaptive mesh generation KW  Delaunay triangulation KW  parallel computing VL  14 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] W.E. Lorensen and H.E. Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” Proc. ACM SIGGRAPH '87, pp. 163169, 1987.
[2] G.M. Nielson and B. Hamann, “The Asymptotic Decider: Resolving the Ambiguity in Marching Cubes,” Proc. Second IEEE Conf. Visualization (VIS '91), pp. 8391, 1991.
[3] S.L. Chan and E.O. Purisma, “A New Tetrahedral Tesselation Scheme for Isosurface Generation,” Computing and Graphics, vol. 22, pp. 8390, 1998.
[4] J.C. Anderson, J.C. Bennett, and K.I. Joy, “Marching Diamonds for Unstructured Meshes,” Proc. 16th IEEE Conf. Visualization (VIS'05), pp. 423429, 2005.
[5] J. Schreiner and C. Scheidegger, “HighQuality Extraction of Isosurfaces from Regular and Irregular Grids,” IEEE Trans. Visualization and Computer Graphics, vol. 12, pp. 12051212, 2006.
[6] G.M. Treece, R.W. Prager, and A.H. Gee, “Regularised Marching Tetrahedra Improved IsoSurface Extraction,” Computers and Graphics, vol. 23, pp. 583598, 1999.
[7] G.M. Nielson, “On Marching Cubes,” IEEE Trans. Visualization and Computer Graphics, vol. 9, pp. 283297, 2003.
[8] A. Lopes and K. Brodlie, “Improving the Robustness and Accuracy of the Marching Cubes Algorithm for Isosurfacing,” IEEE Trans. Visualization and Computer Graphics, vol. 9, pp. 1629, 2002.
[9] L. Kobbelt, M. Botsch, U. Schwanecke, and H. Seidel, “Feature Sensitive Surface Extraction from Volume Data,” Proc. ACM SIGGRAPH '01, pp. 5766, 2001.
[10] S.F.F. Gibson, “Constrained Elastic Surface Nets: Generating Smooth Surfaces from Binary Segmented Data,” Lecture Notes in Computer Science, vol. 1496, pp. 888898, 1998.
[11] G.M. Nielson, “Dual Marching Cubes,” Proc. 15th IEEE Conf. Visualization (VIS '04), 2004.
[12] T. Ju, F. Losasso, S. Schaefer, and J. Warren, “Dual Contouring of Hermite Data,” Proc. ACM SIGGRAPH '02, pp. 339346, 2002.
[13] R. Shu, C. Zhou, and M.S. Kankanhalli, “Adaptive Marching Cubes,” The Visual Computer, vol. 11, pp. 202217, 1995.
[14] R. Shekhar, E. Fayyad, R. Yagel, and J.F. Cornhill, “OctreeBased Decimation of Marching Cubes Surfaces,” Proc. Seventh IEEE Conf. Visualization (VIS '96), pp. 335342, 1996.
[15] W.J. Schroeder, B. Geveci, and M. Malaterre, “Compatible Triangulations of Spatial Decompositions,” Proc. 15th IEEE Conf. Visualization (VIS '04), 2004.
[16] T. Poston, H.T. Nguyen, P. Heng, and T. Wong, ““Skeleton Climbing”: Fast Isosurfaces with Fewer Triangles,” Proc. Fifth Pacific Conf. Computer Graphics and Applications (PG '97), p. 117, 1997.
[17] T. Poston, T. Wong, and P. Heng, “Multiresolution Isosurface Extraction with Adaptive Skeleton Climbing,” Computer Graphics Forum, vol. 17, pp. 137148, 1998.
[18] R. Eils and K. Sätzler, “Shape Reconstruction from Volumetric Data,” Handbook of Computer Vision and Applications, first ed., B. Jähne, H. Haußecker, and P. Geißler, eds., vol.2, pp. 791815, Academic Press, 1999.
[19] R. Eils, E. Bertin, K. Saracoglu, B. Rinke, F. Parazza, E. Schröck, Y. Usson, M. RobertNicoud, J.M. Chassery, E.H.K. Stelzer, T. Cremer, and C. Cremer, “Application of Laser Confocal Microscopy and 3DVoronoi Diagrams for Volume and Surface Estimates of Interphase Chromosomes,” J. Microscopy, vol. 177, pp. 150161, 1995.
[20] Z. Yaniv and K. Cleary, “ImageGuided Procedures: A Review,” technical report, Imaging Science and Information Systems, Georgetown Univ., 2006.
[21] D.P. Luebke, “A Developer's Survey of Polygonal Simplification Algorithms,” IEEE Computer Graphics Application, vol. 21, no. 3, pp.2435, May/June 2001.
[22] CGAL Web site, http:/www.cgal.org, 1997.
[23] D.A. Berry, Statistics: A Bayesian Perspective. Duxburry Press, 1996.
[24] W. Denk and H. Horstmann, “Serial BlockFace Scanning Electron Microscopy to Reconstruct ThreeDimensional Tissue Nanostructure,” PLoS Biology, vol. 2, p. e329, 2004.
[25] VTK Web site, http:/www.vtk.org, 1993.
[26] ImageJ Web site, http://rsb.info.nih.govij/, 1997.
[27] J. Boissonnat, O. Devillers, S. Pion, M. Teillaud, and M. Yvinec, “Triangulations in CGAL,” Computational Geometry, vol. 22, pp. 519, 2002.
[28] S. Bischoff and L. Kobbelt, “Isosurface Reconstruction with Topology Control,” Proc. 10th Pacific Conf. Computer Graphics and Applications (PG '02), pp. 246255, 2002.
[29] S. Bischoff and L. Kobbelt, “Topologically Correct Extraction of the Cortical Surface of a Brain Using LevelSet Methods,” RWTH Aachen, 2004.
[30] http://www.cse.cuhk.edu.hk/~ttwong/papers/ ascasc.html, 1998.
[31] M. Garland and P.S. Heckbert, “Surface Simplification Using Quadric Error Metrics,” Proc. ACM SIGGRAPH '97, pp. 209216, 1997.
[32] J.D. Boissonnat, “Shape Reconstruction Form Planar CrossSections,” Computer Vision, Graphics, and Image Processing, vol. 44, pp. 129, 1988.
[33] J.D. Boissonnat and B. Geiger, Three–Dimensional Reconstruction of Complex Shapes Based on the Delaunay Triangulation, INRIA Research Reports 1697, May 1992.
[34] http://www.cb.uu.se/~tc18/code_data_set3D_images.html , 2006.