This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Toward the Light Field Display: Autostereoscopic Rendering via a Cluster of Projectors
January/February 2008 (vol. 14 no. 1)
pp. 84-96

Abstract—Ultimately, a display device should be capable of reproducing the visual effects observed in reality. In this paper we introduce an autostereoscopic display that uses a scalable array of digital light projectors and a projection screen augmented with microlenses to simulate a light field for a given three-dimensional scene. Physical objects emit or reflect light in all directions to create a light field that can be approximated by the light field display. The display can simultaneously provide many viewers from different viewpoints a stereoscopic effect without headtracking or special viewing glasses. This work focuses on two important technical problems related to the light field display; calibration and rendering. We present a solution to automatically calibrate the light field display using a camera and introduce two efficient algorithms to render the special multi-view images by exploiting their spatial coherence. The effectiveness of our approach is demonstrated with a four-projector prototype that can display dynamic imagery with full parallax.

[1] NewSight Corp., MultiView Display, http:/www.newsight.com, 2006.
[2] SeeReal Tech nology, SeeReal Displays, http:/www.seereal.com/, 2006.
[3] H. Liao, M. Iwahara, N. Hata, I. Sakuma, T. Dohi, T. Koike, Y. Momoi, T. Minakawa, M. Yamasaki, F. Tajima, and H. Takeda, “High-Resolution Integral Videography Autostereoscopic Display Using Multi-Projector,” Proc. Ninth Int'l Display Workshop, pp.1229-1232, 2002.
[4] W. Matusik and H. Pfister, “3D TV: A Scalable System for Real-Time Acquisition, Transmission, and Autostereoscopic Display of Dynamic Scenes,” ACM Trans. Graphics/Proc. ACM SIGGRAPH '04, vol. 23, no. 3, pp.814-824, 2004.
[5] HoloVis Int'l Ltd., 3D Without Glasses, http:/www.holovis.com, 2005.
[6] R. Yang, X. Huang, S. Li, and C. Jaynes, “Toward the Light Field Display: Autostereoscopic Rendering via a Cluster of Projectors,” Proc. Conf. European Assoc. for Computer Graphics (EUROGRAPHICS '06), 2006.
[7] M. Levoy and P. Hanrahan, “Light Field Rendering,” Proc. ACM SIGGRAPH '96, pp. 31-42, Aug. 1996.
[8] S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M.F. Cohen, “The Lumigraph,” Proc. ACM SIGGRAPH '96, pp. 43-54, Aug. 1996.
[9] H.E. Ives, “Optical Properties of a Lippmann Lenticulated Sheet,” J. Optical Soc. of Am., vol. 21, pp. 171-176, 1931.
[10] N.A. Dodgson, “Autostereoscopic 3D Displays,” Computer, vol. 38, no. 8, pp. 31-36, Aug. 2005.
[11] Actuality Systems Inc., Volumetric 3-D Display, http:/www. actuality-systems.com., 2001.
[12] P. St.-Hilaire, “Scalable Optical Architectures for Electronic Holography,” PhD dissertation, Program in Media Arts and Sciences, Massachusetts Inst. of Tech nology, 1994.
[13] P. St.-Hillaire, M. Lucente, J. Sutter, R. Pappu, C.J. Sparrell, and S. Benton, “Scaling Up the MIT Holographic Video System,” Proc. Fifth Int'l Symp. Display Holography, 1995.
[14] D.H. Freedman, “Holograms in Motion,” MIT Technology Rev., vol. 105, no. 9, pp. 48-55, 2002.
[15] D.E. Roberts, “History of Lenticular and Related Autostereoscopic Methods,” white paper, Leap Technologies, LLC, 2003.
[16] K. Perlin, S. Paxia, and J.S. Kollin, “An Autostereoscopic Display,” Proc. ACM SIGGRAPH '00, pp. 319-326, 2000.
[17] J.D. Montes and P. Campoy, “A New Three-Dimensional Visualization System Based on Angular Image Differentiation,” Proc. SPIE: Stereoscopic Displays and Virtual Reality Systems II, vol. 2409, pp. 125-140, 1995.
[18] G. Humphreys, I. Buck, M. Eldrige, and P. Hanrahan, “Chromium: A Stream Processing Framework for Interactive Rendering on Clusters,” Proc. ACM SIGGRAPH '02, July 2002.
[19] R. Surati, “Scalable Self-Calibrating Display Technology for Seamless Large-Scale Displays,” PhD dissertation, Dept. of Computer Science, Massachusetts Inst. of Tech nology, 1998.
[20] R. Raskar, M. Brown, R. Yang, W. Chen, G. Welch, H. Towles, B. Seales, and H. Fuchs, “Multi-Projector Displays Using Camera-Based Registration,” Proc. IEEE Visualization (VIS '99), pp. 161-168, 1999.
[21] M. Brown, A. Majumder, and R. Yang, “Camera-Based Calibration Techniques for Seamless Multiprojector Displays,” IEEE Trans. Visualization and Computer Graphics, vol. 11, no. 2, pp. 193-206, Mar./Apr. 2005.
[22] S.J. Adelson, J.B. Bentley, I.S. Chong, L.F. Hodges, and J. Winograd, “Simultaneous Generation of Stereoscopic Views,” Computer Graphics Forum, vol. 10, no. 1, pp. 3-10, 1991.
[23] M. Wan, N. Zhang, H. Qu, and A.E. Kaufman, “Interactive Stereoscopic Rendering of Volumetric Environments,” IEEE Trans. Visualization and Computer Graphics, vol. 10, no. 1, pp. 15-28, Jan.-Mar. 2004.
[24] W. Mark, L. McMillan, and G. Bishop, “Post-Rendering 3D Warping,” Proc. Symp. I3D Graphics, pp. 7-16, 1997.
[25] L. McMillan and G. Bishop, “Plenoptic Modeling: An Image-Based Rendering System,” Proc. ACM SIGGRAPH '95, pp. 39-46, 1995.
[26] M.W. Halle, “Multiple Viewpoint Rendering,” Proc. ACM SIGGRAPH '98, pp.243-254, 1998.
[27] D. Kartch, “Efficient Rendering and Compression for Full-Parallax Computer-Generated Holographic Stereograms,” PhD dissertation, Cornell Univ., 2000.
[28] J. Stewart, E.P. Bennett, and L. McMillan, “Pixelview: A View-Independent Graphics Rendering Architecture,” Proc. ACM SIGGRAPH/EUROGRAPHICS Conf. Graphics Hardware, pp. 75-84, 2004.
[29] P. Rademacher and G. Bishop, “Multiple Center-of-Projection Images,” Proc. ACM SIGGRAPH '98, pp. 199-206, 1998.
[30] X. Hou, L.-Y. Wei, H. Shum, and B. Guo, “Real-Time Multi-Perspective Rendering on Graphics Hardware,” Proc. EUROGRAPHICS Symp. Rendering, 2006.
[31] R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and H. Fuchs, “The Office of the Future: A Unified Approach to Image-Based Modeling and Spatially Immersive Displays,” Computer Graphics, vol. 32, pp. 179-188, 1998.
[32] A. Isaksen, L. McMillan, and S.J. Gortler, “Dynamically Reparameterized Light Fields,” Proc. ACM SIGGRAPH '00, pp. 297-306, Aug. 2000.
[33] G. Miller, S. Rubin, and D. Ponceleon, “Lazy Decompression of Surface Light Fields for Precomputed Global Illumination,” Proc. Ninth EUROGRAPHICS Workshop Rendering, pp. 281-292, 1998.
[34] C. Everitt, Interactive Order-Independent Transparency, http://developer.nvidia.com/attach6545, 2007.
[35] J. Shade, S.J. Gortler, L.W. He, and R. Szeliski, “Layered Depth Images,” Proc. ACM SIGGRAPH '98, pp. 231-242, Aug. 1998.
[36] C. Mei, V. Popescu, and E. Sacks, “The Occlusion Camera,” Proc. Conf. European Assoc. for Computer Graphics (EUROGRAPHICS '05), 2005.
[37] Fresnel Technologies, Inc., Commodity Lens Arrays, http://www.fresneltech.comindex.html, 2004.
[38] The Tiffen Co., 49 mm Close-up Filter Set with $+$ 1, $+$ 2 & $+$ 4 Macro Lenses, 2004.
[39] M. Zwicker, W. Matusik, F. Durand, and H. Pfister, “Antialiasing for Automultiscopic 3D Displays,” Proc. EUROGRAPHICS Symp. Rendering, 2006.
[40] R.C. Bolles, H.H. Baker, and D.H. Marimont, “Epipolar-Plane Image Analysis: An Approach to Determining Structure from Motion,” Int'l J. Computer Vision, vol. 1, no. 1, pp. 7-55, Mar. 1987.

Index Terms:
virtual reality, display algorithms, projector calibration, image-based rendering
Citation:
Ruigang Yang, Xinyu Huang, Sifang Li, Christopher Jaynes, "Toward the Light Field Display: Autostereoscopic Rendering via a Cluster of Projectors," IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 1, pp. 84-96, Jan.-Feb. 2008, doi:10.1109/TVCG.2007.70410
Usage of this product signifies your acceptance of the Terms of Use.