
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Tino Weinkauf, Jan Sahner, Holger Theisel, HansChristian Hege, "Cores of Swirling Particle Motion in Unsteady Flows," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 17591766, November/December, 2007.  
BibTex  x  
@article{ 10.1109/TVCG.2007.70545, author = {Tino Weinkauf and Jan Sahner and Holger Theisel and HansChristian Hege}, title = {Cores of Swirling Particle Motion in Unsteady Flows}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {13}, number = {6}, issn = {10772626}, year = {2007}, pages = {17591766}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70545}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Cores of Swirling Particle Motion in Unsteady Flows IS  6 SN  10772626 SP1759 EP1766 EPD  17591766 A1  Tino Weinkauf, A1  Jan Sahner, A1  Holger Theisel, A1  HansChristian Hege, PY  2007 KW  unsteady flow visualization KW  feature extraction KW  particle motion VL  13 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] D. Banks and B. Singer., A predictorcorrector technique for visualizing unsteady flow. IEEE TVCG, 1 (2): 151–163, 1995.
[2] D. Bauer and R. Peikert., Vortex tracking in scale space. In DataVisualization 2002. Proc. VisSym 02, pages 233–240, 2002.
[3] R. Bürger,R. Peikert,H. Hauser,F. Sadlo,, and P. Muigg., Extending parallel vectors criteria for unsteady vortices. Technical Report TRVRVis2007021, VRVis, 2007.
[4] E. Caraballo,M. Samimy,, and D. J., Low dimensional modeling of flow for closedloop flow control. AIAA Paper 20030059.
[5] G. Haller., An objective definition of a vortex. J. Fluid Mech., 525: 1–26, 2005.
[6] J. Helman and L. Hesselink., Representation and display of vector field topology in fluid flow data sets. IEEE Computer, 22 (8): 27–36, August 1989.
[7] J. Hunt., Vorticity and vortex dynamics in complex turbulent flows. Proc CANCAM, Trans. Can. Soc. Mec. Engrs, 11: 21, 1987.
[8] J. Jeong and F. Hussain., On the identification of a vortex. J. Fluid Mechanics, 285: 69–94, 1995.
[9] NASA Langley Research Center. Wake vortex study at wallops island, May 1990. http://nix.larc.nasa.govinfo?id=EL199600130&orgid=1.
[10] R. Peikert and M. Roth., The parallel vectors operator  a vector field visualization primitive. In Proc. IEEE Visualization 99, pages 263–270, 1999.
[11] F. Post,B. Vrolijk,H. Hauser,R. Laramee,, and H. Doleisch., Feature extraction and visualisation of flow fields. In Proc. Eurographics 2002, State of the Art Reports, pages 69–100, 2002.
[12] M. Roth and R. Peikert., A higherorder method for finding vortex core lines. In Proc. IEEE Visualization 1998, pages 143–150, 1998.
[13] J. Sahner,T. Weinkauf,, and H.C. Hege., Galilean invariant extraction and iconic representation of vortex core lines. In Proc. EuroVis 2005, pages 151–160, 2005.
[14] J. Sahner,T. Weinkauf,N. Teuber,, and H.C. Hege., Vortex and strain skeletons in eulerian and lagrangian frames. IEEE TVCG, 13 (5), 2007.
[15] D. Stalling,M. Westerhoff,, and H.C. Hege., Amira: A highly interactive system for visual data analysis. The Visualization Handbook, pages 749–767, 2005.
[16] D. Sujudi and R. Haimes., Identification of swirling flow in 3D vector fields. Technical report, Department of Aeronautics and Astronautics, MIT, 1995. AIAA Paper 951715.
[17] H. Theisel,J. Sahner,T. Weinkauf,H.C. Hege,, and H.P. Seidel., Extraction of parallel vector surfaces in 3D timedependent fields and application to vortex core line tracking. In Proc. IEEE Visualization 2005, pages 631–638, 2005.
[18] H. Theisel and H.P. Seidel., Feature flow fields. In Data Visualization 2003. Proc. VisSym 03, pages 141–148, 2003.
[19] H. Theisel,T. Weinkauf,H.C. Hege,, and H.P. Seidel., Topological methods for 2D timedependent vector fields based on stream lines and path lines. IEEE TVCG, 11 (4): 383–394, 2005.
[20] X. Tricoche,T. Wischgoll,G. Scheuermann,, and H. Hagen., Topology tracking for the visualization of timedependent twodimensional flows. Computers & Graphics, 26: 249–257, 2002.
[21] T. Weinkauf,H. Theisel,H.C. Hege,, and H.P. Seidel., Feature flow fields in outofcore settings. In H. Hauser, H. Hagen, and H. Theisel, editors, Topologybased Methods in Visualization, Mathematics and Visualization, pages 51–64. Springer, 2007.
[22] H.Q. Zhang,U. Fey,B. Noack,M. König,, and H. Eckelmann., On the transition of the cylinder wake. Phys. Fluids, 7 (4): 779–795, 1995.