This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Generalized Streak Lines: Analysis and Visualization of Boundary Induced Vortices
November/December 2007 (vol. 13 no. 6)
pp. 1735-1742
We present a method to extract and visualize vortices that originate from bounding walls of three-dimensional time-dependent flows. These vortices can be detected using their footprint on the boundary, which consists of critical points in the wall shear stress vector field. In order to follow these critical points and detect their transformations, affected regions of the surface are parameterized. Thus, an existing singularity tracking algorithm devised for planar settings can be applied. The trajectories of the singularities are used as a basis for seeding particles. This leads to a new type of streak line visualization, in which particles are released from a moving source. These generalized streak lines visualize the particles that are ejected from the wall. We demonstrate the usefulness of our method on several transient fluid flow datasets from computational fluid dynamics simulations.

[1] G. K. Batchelor, An Introduction to Fluid Dynamics. Cambridge University Press, 1967.
[2] U. Dallmann, Topological Structures of Three-Dimensional Flow Separations. Technical Report 221-82 A 07, Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, 1983.
[3] M. Fischer, P. Schröder, H. Desbrun, and H. Hoppe, Design of Tangent Vector Fields. SIGGRAPH '07, 2007, to appear.
[4] M. S. Floater, Mean Value Coordinates. Computer Aided Design, 20 (1): 19–27, 2003.
[5] M. S. Floater and K. Hormann, Parameterization of Triangulations and Unorganized Points. In A. Iske, E. Quak, and M. S. Floater, editors, Tutorials on Multiresolution in Geometric Modelling, Mathematics and Visualization, pages 287–316. Springer, Berlin, Heidelberg, 2002.
[6] M. S. Floater and K. Hormann, Surface Parameterization: A Tutorial and Survey. In N. A. Dodgson, M. S. Floater, and M. A. Sabin, editors, Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization, pages 157–186. Springer, Berlin, Heidelberg, 2005.
[7] C. Garth, R. S. Laramee, X. Tricoche, J. Schneider, and H. Hagen, Extraction and Visualization of Swirl and TumbleMotion from Engine Simulation Data. In Topology-based Methods in Visualization, Mathematics+Visualization. Springer, 2007.
[8] C. Garth, X. Tricoche, and G. Scheuermann, Tracking of Vector Field Singularities in Unstructured 3D Time-Dependent Datasets. In H. Rushmeier, G. Turk, and J. J. vanWijk, editors, Proc. of the IEEE Visualization 2004 (VIS'04), pages 329 – 336. IEEE Computer Society, October 2004.
[9] M. Griebel, T. Dornseifer, and T. Neunhoeffer, Numerical Simulation in Fluid Dynamics, a Practical Introduction. SIAM, Philadelphia, 1998.
[10] E. Grinspun, P. Schröder, and M. Desbrun, Discrete Differential Geometry: An Applied Introduction. In SIGGRAPH'05 Course Notes, 2005.
[11] J. L. Helman and L. Hesselink, Surface Representations of Two- and Three-Dimensional Fluid Flow Topology. In VIS '90: Proceedings of the 1st Conference on Visualization '90, pages 6–13, Los Alamitos, CA, USA, 1990. IEEE Computer Society Press.
[12] D. N. Kenwright, C. Henze, and C. Levit, Features Extraction of Separation and Attachment Lines. IEEE Transactions on Visualization and Computer Graphics, 5 (2): 135–144, 1999.
[13] A. Khodakovsky, N. Litke, and P. Schröder, Globally Smooth Parameterizations with Low Distortion. In SIGGRAPH '03, 2003.
[14] R. S. Laramee, H. Hauser, L. Zhao, and F. H. Post, Topology-Based Flow Visualization, The State of the Art. In Topology-Based Methods in Visualization Workshop, September 2005.
[15] R. S. Laramee, J. J. van Wijk, B. Jobard, and H. Hauser, ISA and IBFVS: Image Space-Based Visualization of Flow on Surfaces. IEEE Transactions on Visualization and Computer Graphics, 10 (6): 637–648, 2004.
[16] B. Lévy, S. Petitjean, N. Ray, and J. Maillot, Least Squares Conformal Maps for Automatic Texture Atlas Generation. In SIGGRAPH '02, pages 362–371, New York, NY, USA, 2002. ACM Press.
[17] W.-C. Li, B. Vallet, N. Ray, and B. Léevy, Representing Higher-Order Singularities in Vector Fields on Piecewise Linear Surfaces. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 1315–1322, 2006.
[18] H. J. Lugt, Introduction to Vortex Theory. Vortex Flow Press, Inc., Potomac, Maryland, 1996.
[19] R. Peikert and M. Roth, The 'Parallel Vectors' Operator - A Vector Field Visualization Primitive. In Proceedings of the conference on Visualization '99: celebrating ten years, pages 263 – 270, 1999.
[20] R. Peikert and F. Sadlo, Topology-guided Visualization of Constrained Vector Fields. In Topology-based Methods in Visualization, Mathematics+Visualization. Springer, 2007.
[21] N. Ray, W. C. Li, B. Léevy, A. Sheffer, and P. Alliez, Periodic Global Parameterization. ACM Trans. Graph., 25 (4): 1460–1485, 2006.
[22] L. Saboret, P. Alliez, and B. Léevy, Planar Parameterization of Triangulated Surface Meshes. In CGAL Editorial Board, editor, CGAL-3.2 User and Reference Manual. website, 2006. http://www.cgal.org/Manual/3.2/dochtml/cgalmanual title.html.
[23] F. Sadlo, R. Peikert, and M. Sick, Visualization tools for vorticity transport analysis in incompressible flow. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 949–956, 2006.
[24] G. Scheuermann and X. Tricoche, Topological methods in flow visualization. In C. Johnson and C. Hansen, editors, Visualization Handbook, pages 341–356. Academic Press, 2004.
[25] D. Sujudi and R. Haimes, Identification of Swirling Flow in 3-D Vector Fields. In 12th AIAA CFD Conference, San Diego CA, June 1995.
[26] A. Surana, O. Grunberg, and G. Haller, Exact theory of three-dimensional flow separation. Part I: Steady separation. J. Fluid Mech., 564:57–103, 2006.
[27] A. Surana, G. Jacobs, O. Grunberg, and G. Haller, Exact Theory of Three-Dimensional Flow Separation. Part II: Fixed Unsteady Separation. J. Fluid Mechanics, submitted, available at http://web.mit.edu/ghaller/wwwpapers.html , 2007.
[28] H. Theisel, J. Sahner, T. Weinkauf, H.-C. Hege, and H.-P. Seidel, Extraction of Parallel Vector Surfaces in 3D Time-Dependent Fields and Application to Vortex Core Line Tracking. In Proc. IEEE Visualization 2005, pages 631–638, Minneapolis, U.S.A., October 2005.
[29] H. Theisel and H.-P. Seidel, Feature Flow Fields. In VISSYM '03: Proceedings of the Symposium on Data Visualisation 2003, pages 141–148. Eurographics Association, 2003.
[30] X. Tricoche, T. Wischgoll, G. Scheuermann, and H. Hagen, Topology Tracking for the Visualization of Time-Dependent Two-Dimensional Flows. Computers & Graphics, 26 (2): 249 – 257, 2002.
[31] K. Wang, Y. Tong, M. Desbrun, and P. Schröder, Edge Subdivision Schemes and the Construction of Smooth Vector Fields. ACM Transactions on Graphics (SIGGRAPH '06), 25 (3): 1041–1048, 2006.
[32] D. Weiskopf and T. Ertl, A Hybrid Physical/Device-Space Approach for Spatio-Temporally Coherent Interactive Texture Advection on Curved Surfaces. In Proc. of the 2004 Conference on Graphics Interface, pages 263–270. Canadian Human-Computer Communications Society, 2004.
[33] E. Zhang, K. Mischaikow, and G. Turk, Vector Field Design on Surfaces. ACM Trans. Graph., 25 (4): 1294–1326, 2006.

Index Terms:
Skin friction, singularity tracking, vortex, generalized streak line, flow visualization, time-dependent vector fields.
Citation:
Alexander Wiebel, Xavier Tricoche, Dominic Schneider, Heike Jaenicke, Gerik Scheuermann, "Generalized Streak Lines: Analysis and Visualization of Boundary Induced Vortices," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1735-1742, Nov.-Dec. 2007, doi:10.1109/TVCG.2007.70557
Usage of this product signifies your acceptance of the Terms of Use.