
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Alexander Wiebel, Xavier Tricoche, Dominic Schneider, Heike Jaenicke, Gerik Scheuermann, "Generalized Streak Lines: Analysis and Visualization of Boundary Induced Vortices," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 17351742, November/December, 2007.  
BibTex  x  
@article{ 10.1109/TVCG.2007.70557, author = {Alexander Wiebel and Xavier Tricoche and Dominic Schneider and Heike Jaenicke and Gerik Scheuermann}, title = {Generalized Streak Lines: Analysis and Visualization of Boundary Induced Vortices}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {13}, number = {6}, issn = {10772626}, year = {2007}, pages = {17351742}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70557}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Generalized Streak Lines: Analysis and Visualization of Boundary Induced Vortices IS  6 SN  10772626 SP1735 EP1742 EPD  17351742 A1  Alexander Wiebel, A1  Xavier Tricoche, A1  Dominic Schneider, A1  Heike Jaenicke, A1  Gerik Scheuermann, PY  2007 KW  Skin friction KW  singularity tracking KW  vortex KW  generalized streak line KW  flow visualization KW  timedependent vector fields. VL  13 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] G. K. Batchelor, An Introduction to Fluid Dynamics. Cambridge University Press, 1967.
[2] U. Dallmann, Topological Structures of ThreeDimensional Flow Separations. Technical Report 22182 A 07, Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt, 1983.
[3] M. Fischer, P. Schröder, H. Desbrun, and H. Hoppe, Design of Tangent Vector Fields. SIGGRAPH '07, 2007, to appear.
[4] M. S. Floater, Mean Value Coordinates. Computer Aided Design, 20 (1): 19–27, 2003.
[5] M. S. Floater and K. Hormann, Parameterization of Triangulations and Unorganized Points. In A. Iske, E. Quak, and M. S. Floater, editors, Tutorials on Multiresolution in Geometric Modelling, Mathematics and Visualization, pages 287–316. Springer, Berlin, Heidelberg, 2002.
[6] M. S. Floater and K. Hormann, Surface Parameterization: A Tutorial and Survey. In N. A. Dodgson, M. S. Floater, and M. A. Sabin, editors, Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization, pages 157–186. Springer, Berlin, Heidelberg, 2005.
[7] C. Garth, R. S. Laramee, X. Tricoche, J. Schneider, and H. Hagen, Extraction and Visualization of Swirl and TumbleMotion from Engine Simulation Data. In Topologybased Methods in Visualization, Mathematics+Visualization. Springer, 2007.
[8] C. Garth, X. Tricoche, and G. Scheuermann, Tracking of Vector Field Singularities in Unstructured 3D TimeDependent Datasets. In H. Rushmeier, G. Turk, and J. J. vanWijk, editors, Proc. of the IEEE Visualization 2004 (VIS'04), pages 329 – 336. IEEE Computer Society, October 2004.
[9] M. Griebel, T. Dornseifer, and T. Neunhoeffer, Numerical Simulation in Fluid Dynamics, a Practical Introduction. SIAM, Philadelphia, 1998.
[10] E. Grinspun, P. Schröder, and M. Desbrun, Discrete Differential Geometry: An Applied Introduction. In SIGGRAPH'05 Course Notes, 2005.
[11] J. L. Helman and L. Hesselink, Surface Representations of Two and ThreeDimensional Fluid Flow Topology. In VIS '90: Proceedings of the 1st Conference on Visualization '90, pages 6–13, Los Alamitos, CA, USA, 1990. IEEE Computer Society Press.
[12] D. N. Kenwright, C. Henze, and C. Levit, Features Extraction of Separation and Attachment Lines. IEEE Transactions on Visualization and Computer Graphics, 5 (2): 135–144, 1999.
[13] A. Khodakovsky, N. Litke, and P. Schröder, Globally Smooth Parameterizations with Low Distortion. In SIGGRAPH '03, 2003.
[14] R. S. Laramee, H. Hauser, L. Zhao, and F. H. Post, TopologyBased Flow Visualization, The State of the Art. In TopologyBased Methods in Visualization Workshop, September 2005.
[15] R. S. Laramee, J. J. van Wijk, B. Jobard, and H. Hauser, ISA and IBFVS: Image SpaceBased Visualization of Flow on Surfaces. IEEE Transactions on Visualization and Computer Graphics, 10 (6): 637–648, 2004.
[16] B. Lévy, S. Petitjean, N. Ray, and J. Maillot, Least Squares Conformal Maps for Automatic Texture Atlas Generation. In SIGGRAPH '02, pages 362–371, New York, NY, USA, 2002. ACM Press.
[17] W.C. Li, B. Vallet, N. Ray, and B. Léevy, Representing HigherOrder Singularities in Vector Fields on Piecewise Linear Surfaces. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 1315–1322, 2006.
[18] H. J. Lugt, Introduction to Vortex Theory. Vortex Flow Press, Inc., Potomac, Maryland, 1996.
[19] R. Peikert and M. Roth, The 'Parallel Vectors' Operator  A Vector Field Visualization Primitive. In Proceedings of the conference on Visualization '99: celebrating ten years, pages 263 – 270, 1999.
[20] R. Peikert and F. Sadlo, Topologyguided Visualization of Constrained Vector Fields. In Topologybased Methods in Visualization, Mathematics+Visualization. Springer, 2007.
[21] N. Ray, W. C. Li, B. Léevy, A. Sheffer, and P. Alliez, Periodic Global Parameterization. ACM Trans. Graph., 25 (4): 1460–1485, 2006.
[22] L. Saboret, P. Alliez, and B. Léevy, Planar Parameterization of Triangulated Surface Meshes. In CGAL Editorial Board, editor, CGAL3.2 User and Reference Manual. website, 2006. http://www.cgal.org/Manual/3.2/dochtml/cgalmanual title.html.
[23] F. Sadlo, R. Peikert, and M. Sick, Visualization tools for vorticity transport analysis in incompressible flow. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 949–956, 2006.
[24] G. Scheuermann and X. Tricoche, Topological methods in flow visualization. In C. Johnson and C. Hansen, editors, Visualization Handbook, pages 341–356. Academic Press, 2004.
[25] D. Sujudi and R. Haimes, Identification of Swirling Flow in 3D Vector Fields. In 12th AIAA CFD Conference, San Diego CA, June 1995.
[26] A. Surana, O. Grunberg, and G. Haller, Exact theory of threedimensional flow separation. Part I: Steady separation. J. Fluid Mech., 564:57–103, 2006.
[27] A. Surana, G. Jacobs, O. Grunberg, and G. Haller, Exact Theory of ThreeDimensional Flow Separation. Part II: Fixed Unsteady Separation. J. Fluid Mechanics, submitted, available at http://web.mit.edu/ghaller/wwwpapers.html , 2007.
[28] H. Theisel, J. Sahner, T. Weinkauf, H.C. Hege, and H.P. Seidel, Extraction of Parallel Vector Surfaces in 3D TimeDependent Fields and Application to Vortex Core Line Tracking. In Proc. IEEE Visualization 2005, pages 631–638, Minneapolis, U.S.A., October 2005.
[29] H. Theisel and H.P. Seidel, Feature Flow Fields. In VISSYM '03: Proceedings of the Symposium on Data Visualisation 2003, pages 141–148. Eurographics Association, 2003.
[30] X. Tricoche, T. Wischgoll, G. Scheuermann, and H. Hagen, Topology Tracking for the Visualization of TimeDependent TwoDimensional Flows. Computers & Graphics, 26 (2): 249 – 257, 2002.
[31] K. Wang, Y. Tong, M. Desbrun, and P. Schröder, Edge Subdivision Schemes and the Construction of Smooth Vector Fields. ACM Transactions on Graphics (SIGGRAPH '06), 25 (3): 1041–1048, 2006.
[32] D. Weiskopf and T. Ertl, A Hybrid Physical/DeviceSpace Approach for SpatioTemporally Coherent Interactive Texture Advection on Curved Surfaces. In Proc. of the 2004 Conference on Graphics Interface, pages 263–270. Canadian HumanComputer Communications Society, 2004.
[33] E. Zhang, K. Mischaikow, and G. Turk, Vector Field Design on Surfaces. ACM Trans. Graph., 25 (4): 1294–1326, 2006.