This Article 
 Bibliographic References 
 Add to: 
Construction of Simplified Boundary Surfaces from Serial-sectioned Metal Micrographs
November/December 2007 (vol. 13 no. 6)
pp. 1528-1535
We present a method for extracting boundary surfaces from segmented cross-section image data. We use a constrained Potts model to interpolate an arbitrary number of region boundaries between segmented images. This produces a segmented volume from which we extract a triangulated boundary surface using well-known marching tetrahedra methods. This surface contains staircase-like artifacts and an abundance of unnecessary triangles. We describe an approach that addresses these problems with a voxel-accurate simplification algorithm that reduces surface complexity by an order of magnitude. Our boundary interpolation and simplification methods are novel contributions to the study of surface extraction from segmented cross-sections. We have applied our method to construct polycrystal grain boundary surfaces from micrographs of a sample of the metal tantalum.

[1] B. Adams, S. Wright, and K. Kunze, Orientation imaging: the emergence of a new microscopy. Metall. Trans. A, 24A (4): 819–831, 1993.
[2] M. Bertram, G. Reis, R. H. van Lengen, S. Köhn, and H. Hagen, Non-manifold Mesh Extraction from Time-varying Segmented Volumes used for Modeling a Human Heart. In K. Brodlie, D. Duke, and K. Joy, editors, Eurographics / IEEE VGTC Symposium on Visualization, pages 199–206. Eurographics Association, 2005.
[3] S. Bischoff and L. Kobbelt, Extracting Consistent and Manifold Interfaces from Multi-valued Volume Data Sets, pages 281–285. Springer Berlin Heidelberg, 2006.
[4] J.-D. Boissonnat, Shape reconstruction from planar cross sections. Comp. Vision Graph. Image Process., 44 (1): 1–29, 1988.
[5] Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell., 23 (11): 1222–1239, 2001.
[6] I. Braude, J. Marker, K. Museth, J. Nissanov, and D. Breen, Contour-based surface reconstruction using mpu implicit models. Graphical Models, 69 (2): 139–157, 2007.
[7] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. Brooks, and W. Wright, Simplification envelopes. In SIGGRAPH '96: Proc. of the 23rd annual conference on Computer graphics and interactive techniques, pages 119–128, New York, NY, USA, 1996. ACM Press.
[8] T. Dey, H. Edelsbrunner, H. Guha, and D. Nekhayev, Topology preserving edge contraction. Publ. Inst. Math. (Beograd), 66: 23–45, 1999.
[9] H. Fuchs, Z. M. Kedem, and S. P. Uselton, Optimal surface reconstruction from planar contours. Commun. ACM, 20 (10): 693–702, 1977.
[10] M. Garland and P. S. Heckbert, Surface simplification using quadric error metrics. In SIGGRAPH '97: Proc. of the 24th annual conference on Computer graphics and interactive techniques, pages 209–216, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.
[11] A. Guéziec, Locally toleranced surface simplification. IEEE Trans. on Visualization and Computer Graphics, 5 (2): 168–189, 1999.
[12] H.-C. Hege, M. Seebass, D. Stalling, and M. Zöckler, A generalized marching cubes algorithm based on nonbinary classifications. Technical Report SC 97-05, Zuse Institute Berlin, 1997.
[13] E. A. Holm and C. C. Battaile, The computer simulation of microstructural evolution. Journal of The Minerals, Metals and Materials Society (JOM), 53 (9): 20–23, 2001.
[14] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, Mesh optimization. In SIGGRAPH '93: Proc. of the 20th annual conference on Computer graphics and interactive techniques, pages 19–26, New York, NY, USA, 1993. ACM Press.
[15] M.W. Jones and M. Chen, A new approach to the construction of surfaces from contour data. Computer Graphics Forum, 13 (3): 75–84, 1994.
[16] A. D. Kalvin and R. H. Taylor, Superfaces: Polygonal mesh simplification with bounded error. IEEE Comp. Graph. Appl., 16 (3): 64–77, 1996.
[17] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing. Science, 220 (4598): 671–680, 1983.
[18] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel, Interactive multi-resolution modeling on arbitrary meshes. In SIGGRAPH '98: Proc. of the 25th annual conference on Computer graphics and interactive techniques, pages 105–114, New York, NY, USA, 1998. ACM Press.
[19] W. E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3d surface construction algorithm. In SIGGRAPH '87: Proc. of the 14th annual conference on Computer graphics and interactive techniques, pages 163–169, New York, NY, USA, 1987. ACM Press.
[20] D. P. Luebke, A developer's survey of polygonal simplification algorithms. IEEE Comp. Graph. Appl., 21 (3): 24–35, 2001.
[21] J. S. B. Mitchell and S. Suri, Separation and approximation of polyhedral objects. Computational Geometry, 5 (2): 95–114, 1995.
[22] H. Müller, Boundary extraction for rasterized motion planning. Technical Report 566, University of Dortmund, 1995.
[23] L. Neumann, B. Csébfalvi, I. Viola, M. Mlejnek, and E. Gröller, Feature-preserving volume filtering. In VISSYM '02: Proc. of the symposium on Data Visualisation 2002, pages 105-ff, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Association.
[24] G. M. Nielson and R. Franke, Computing the separating surface for segmented data. In VIS '97: Proc. of the 8th conference on Visualization '97, pages 229–233, Los Alamitos, CA, USA, 1997. IEEE Computer Society Press.
[25] G. M. Nielson, G. Graf, R. Holmes, A. Huang, and M. Phielipp, Shrouds: optimal separating surfaces for enumerated volumes. In VISSYM '03: Proc. of the symposium on Data visualisation 2003, pages 75–84, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.
[26] O. Nilsson, D. Breen, and K. Museth, Surface reconstruction via contour metamorphosis: An eulerian approach with lagrangian particle tracking. In Proc. Visualization, pages 407–414. IEEE Computer Society Press, 2005.
[27] B. Reitinger, A. Bornik, and R. Beichel, Constructing smooth non-manifold meshes of multi-labeled volumetric datasets. In Proc. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, WSCG 2005, pages 227–234. University of West Bohemia, 2005.
[28] D. Weinstein, Scanline surfacing: building separating surfaces from planar contours. In VIS '00: Proc. of the conference on Visualization '00, pages 283–289, Los Alamitos, CA, USA, 2000. IEEE Computer Society Press.
[29] R. T. Whitaker, Reducing aliasing artifacts in iso-surfaces of binary volumes. In VVS '00: Proc. of the 2000 IEEE symposium on Volume visualization, pages 23–32, New York, NY, USA, 2000. ACM Press.
[30] Z. Wu and J. M. Sullivan, Multiple material marching cubes algorithm. International Journal for Numerical Methods in Engineering, 58 (2): 189–207, 2003.
[31] S. Zelinka and M. Garland, Permission grids: practical, error-bounded simplification. ACM Trans. Graph., 21 (2): 207–229, 2002.

Index Terms:
Surface extraction, Polygonal meshes, Visualization in Physical Sciences, Life Sciences and Engineering
Scott Dillard, John Bingert, Dan Thoma, Bernd Hamann, "Construction of Simplified Boundary Surfaces from Serial-sectioned Metal Micrographs," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1528-1535, Nov.-Dec. 2007, doi:10.1109/TVCG.2007.70543
Usage of this product signifies your acceptance of the Terms of Use.