This Article 
 Bibliographic References 
 Add to: 
Variable Interactions in Query-Driven Visualization
November/December 2007 (vol. 13 no. 6)
pp. 1400-1407
Our ability to generate ever-larger, increasingly-complex data, has established the need for scalable methods that identify, and provide insight into, important variable trends and interactions. Query-driven methods are among the small subset of techniques that are able to address both large and highly complex datasets. This paper presents a new method that increases the utility of query-driven techniques by visually conveying statistical information about the trends that exist between variables in a query. In this method, correlation fields, created between pairs of variables, are used with the cumulative distribution functions of variables expressed in a user's query. This integrated use of cumulative distribution functions and correlation fields visually reveals, with respect to the solution space of the query, statistically important interactions between any three variables, and allows for trends between these variables to be readily identified. We demonstrate our method by analyzing interactions between variables in two flame-front simulations.

[1] H. Akiba, K.-L. Ma,J. H. Chen,, and E. R. Hawkes., Visualizing multivariate volume data from turbulent combustion simulations. Computing in Science and Engineering, 9 (2): 76–83, 2007.
[2] J. Becla and D. L. Wang., Lessons learned from managing a petabyte. In CIDR, pages 70–83, 2005.
[3] J. B. Bell,M. S. Day,I. G. Shepherd,M. R. Johnson,R. K. Cheng,J. F. Grcar,V. E. Beckner,, and M. J. Lijewski., Numerical simulation of a laboratory-scale turbulent v-flame. Proceedings of the National Academy of Science, 102: 10006–10011, July 2005.
[4] M. J. Berger and P. Colella., Local adaptive mesh refinement for shock hydrodynamics. Journal of Computational Physics, 82 (1): 64–84, May 1989.
[5] N. J. Brown,G. Li,, and M. L. Koszykowski., Mechanism reduction via principal component analysis. International Journal of Chemical Kinetics, 29: 393–414, 1997.
[6] M. Day and J. Bell., Simulation of premixed turbulent flames. Journal of Physics Conference Series, 46: 43–47, Sept. 2006.
[7] H. Edelsbrunner,J. Harer,V. Natarajan,, and V. Pascucci., Local and global comparison of continuous functions. In IEEE Visualization, pages 275–280. IEEE Computer Society, 2004.
[8] M. Frenklach,H. Wang,M. Goldenberg,G. P. Smith,C. Yu,D. M. Golden,C. T. Bowman,R. K. Hanson,D. Davidson,E. Chang,G. Smith,D. Golden,W. C. Gardiner,, and V. Lissianski., Gri-mechan optimized detailed chemical reaction mechanism for methane combustion. Technical Report No. GRI-95/0058, Gas Research Institute, Nov. 1995.
[9] Y.-H. Fua,M. O. Ward,, and E. A. Rundensteiner., Hierarchical parallel coordinates for exploration of large datasets. In IEEE Visualization, pages 43–50, 1999.
[10] L. Gosink,J. Shalf,K. Stockinger,K. Wu,, and W. Bethel., Hdf5-fastquery: Accelerating complex queries on hdf datasets using fast bitmap indices. In SSDBM, pages 149–158, 2006.
[11] J. Gray,D. T. Liu,M. A. Nieto-Santisteban,A. S. Szalay,D. J. DeWitt,, and G. Heber., Scientific data management in the coming decade. SIGMOD Record, 34 (4): 34–41, 2005.
[12] G. Hermosillo,C. Chefd'hotel,, and O. Faugeras., Variational methods for multimodal image matching. International Journal of Computer Vision, 50 (3): 329–343, 2002.
[13] A. Inselberg., The plane with parallel coordinates. The Visual Computer, 1 (2): 69–91, 1985.
[14] N. Sauber,H. Theisel,, and H.-P. Seidel., Multifield-graphs: An approach to visualizing correlations in multifield scalar data. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 917–924, 2006.
[15] K. Stockinger,E. W. Bethel,S. Campbell,E. Dart,, and K. Wu., Imaging and visual analysis - detecting distributed scans using high-performance query-driven visualization. In Supercomputing, page 82. ACM Press, 2006.
[16] K. Stockinger,J. Shalf,E. W. Bethel,, and K. Wu., Dex: Increasing the capability of scientific data analysis pipelines by using efficient bitmap indices to accelerate scientific visualization. In Scientific and Statistical Database Management, pages 35–44, 2005.
[17] K. Stockinger,J. Shalf,K. Wu,, and E. W. Bethel., Query-driven visualization of large data sets. In IEEE Visualization, pages 167–174, 2005.
[18] R. Taylor., Visualizing multiple fields on the same surface. IEEE Computer Graphics and Applications, 22 (3): 6–10, 2002.
[19] T. Urness,V. Interrante,I. Marusic,E. Longmire,, and B. Ganapathisubramani., Effectively visualizing multi-valued flow data using color and texture. In IEEE Visualization, pages 115–121, 2003.
[20] P. C. Wong and R. D. Bergeron., 30 years of multidimensional multivariate visualization. In G. M. Nielson, H. Hagen, and H. Müller, editors, Scientific Visualization, pages 3–33. IEEE Computer Society, 1994.
[21] K. Wu,W. S. Koegler,J. Chen,, and A. Shoshani., Using bitmap index for interactive exploration of large datasets. In Scientific and Statistical Database Management, pages 65–74. IEEE Computer Society, 2003.
[22] K. Wu,E. J. Otoo,, and A. Shoshani., On the performance of bitmap indices for high cardinality attributes. In M. A. Nascimento, M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B. Schiefer, editors, Proceedings of the Thirtieth International Conference on Very Large Data Bases, pages 24–35. Morgan Kaufmann, 2004.

Index Terms:
Multivariate Data, Query-Driven Visualization
Luke Gosink, John Anderson, Wes Bethel, Kenneth Joy, "Variable Interactions in Query-Driven Visualization," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1400-1407, Nov.-Dec. 2007, doi:10.1109/TVCG.2007.70609
Usage of this product signifies your acceptance of the Terms of Use.