
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Heike Jänicke, Alexander Wiebel, Gerik Scheuermann, Wolfgang Kollmann, "Multifield Visualization Using Local Statistical Complexity," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 13841391, November/December, 2007.  
BibTex  x  
@article{ 10.1109/TVCG.2007.70615, author = {Heike Jänicke and Alexander Wiebel and Gerik Scheuermann and Wolfgang Kollmann}, title = {Multifield Visualization Using Local Statistical Complexity}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {13}, number = {6}, issn = {10772626}, year = {2007}, pages = {13841391}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70615}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Multifield Visualization Using Local Statistical Complexity IS  6 SN  10772626 SP1384 EP1391 EPD  13841391 A1  Heike Jänicke, A1  Alexander Wiebel, A1  Gerik Scheuermann, A1  Wolfgang Kollmann, PY  2007 KW  Local statistical complexity KW  multifield visualization KW  timedependent KW  coherent structures KW  feature detection KW  information theory KW  flow visualization. VL  13 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] O. Andreassen, Visualization of vector fields using seed LIC and volume rendering. IEEE Transactions on Visualization and Computer Graphics, 10 (6): 673–682, 2004. MemberAnders Helgeland.
[2] R. Badii and A. Politi, Complexity: Hierarchical Structures and Scaling in Physics. Cambridge University Press, Cambridge, 1997.
[3] A. Bair, D. H. House, and C. Ware, Texturing of layered surfaces for optimal viewing. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 1125–1132, 2006.
[4] P. Ball, The SelfMade Tapestry: Pattern Formation in Nature. Oxford University Press, 2001.
[5] W. Bialek, I. Nemenman, and N. Tishby, Predictability, complexity, and learning. Neural Computation, 13: 2409–2463, 2001.
[6] P. Billant, J. Chomaz, and P. Huerre, Experimental study of vortex breakdown in swirling jets. JFM, 376: 183–219, 1999.
[7] J. P. Crutchfield and K. Young, Inferring statistical complexity. Phys. Rev. Lett., 63 (2): 105–108, July 1989.
[8] G. W. E. Hairer, Solving Ordinary Differential Equations II, Stiff and DifferentialAlgebraic Problems, 2nd ed. Springer Verlag, Berlin, 1996.
[9] J. Ebling and G. Scheuermann, Clifford convolution and pattern matching on vector fields. In Proceedings of the 14th IEEE Visualization 2003, pages 193–200, Washington, DC, USA, 2003. IEEE Computer Society.
[10] ftp://ftp.lrzmuenchen.de/pub/science/fluiddynamics/cfd/NaSt2D.
[11] C. Garth, G.S. Li, X. Tricoche, C. D. Hansen, and H. Hagen, Visualization of coherent structures in transient flow. to appear in Proceedings of TopoInVis 2007: TopologyBased Methods in Visualization, Leipzig, Germany, March4–6, 2007.
[12] P. Grassberger, Toward a quantitative theory of selfgenerated complexity. International Journal of Theoretical Physics, 25 (9): 907–938, Sept. 1986.
[13] J. M. Greenberg and S. P. Hastings, Spatial patterns for discrete models of diffusion in excitable media. SIAM Journal on Applied Mathematics, 34: 515–523, 1978.
[14] M. Griebel, T. Dornseifer, and T. Neunhoeffer, Numerical simulation in fluid dynamics: a practical introduction. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1998.
[15] H. Gutowitz, A massively parallel cryptosystem based on cellular automata. In B. Schneier, editor, Applied Cryptography. K. Reidel, 1993.
[16] H. Hartman and P. Tamayo, Reversible CA and chemical turbulence. Physica D, 45: 293–306, 1990.
[17] E. Heiberg, T. Ebbers, L. Wigstrom, and M. Karlsson, Threedimensional flow characterization using vector pattern matching. IEEE Transactions on Visualization and Computer Graphics, 9 (3): 313–319, 2003.
[18] P. G. Hoel, S. C. Port, and C. J. Stone, Introduction to Statistical Theory: Ch. 3  Testing Hypotheses. New York: Houghton Mifflin, 1971.
[19] T. Hogg and B. Huberman, Order, complexity and disorder. Xerox Palo Alto Research Center (preprint), 1985.
[20] B. Jähne, Digital image processing: concepts, algorithms and scientific applications. SpringerVerlag, London, UK, 1991.
[21] C. A. Kennedy, M. H. Carpenter, and R. M. Lewis, Lowstorage, explicit RungeKutta schemes for the compressible NavierStokes equations. Appl. Numer. Math., 35 (3): 177–219, 2000.
[22] R. M. Kirby, H. Marmanis, and D. H. Laidlaw, Visualizing multivalued data from 2D incompressible flows using concepts from painting. In D. Ebert, M. Gross, and B. Hamann, editors, IEEE Visualization '99, pages 333–340, San Francisco, 1999.
[23] J. Kniss, P. McCormick, A. McPherson, J. Ahrens, J. Painter, A. Keahey, and C. Hansen, Interactive texturebased volume rendering for large data sets. IEEE Computer Graphics and Applications, 21 (4): 52–61, 2001.
[24] A. Kolmogorov, Logical basis for information theory and probability theory. IEEE Trans. on Information Theory, 14 (5): 662–664, Sept. 1968.
[25] S. Kullback, Information Theory and Statistics. Dover Publ., Inc., 1968.
[26] Y. Li, Wavenumberextended highorder upwindbiased finitedifference schemes for convective scalar transport. J. Comput. Phys., 133 (2): 235–255, 1997.
[27] H. Liang and T. Maxworthy, An experimental investigation of swirling jets. Journal of Fluid Mechanics, 525: 115–159, Feb. 2005.
[28] S. Omohundro, Modelling cellular automata with partial differential equations. Physica D Nonlinear Phenomena, 10: 128–134, Jan. 1984.
[29] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch, The state of the art in flow visualisation: Feature extraction and tracking. Computer Graphics Forum, 22 (4): 775–792, 2003.
[30] K. Riley, D. Ebert, C. Hansen, and J. Levit, Visually accurate multifield weather visualization. In Proc. of the 14th IEEE Visualization 2003, pages 279–286, Washington, DC, USA, 2003. IEEE Computer Society.
[31] E. Roeckner et al. The atmospheric general circulation model ECHAM 5. PART I: Model description. Tech. Rep. 349, Max Planck Inst. for Meteorol., Hamburg, Germany, 2003.
[32] M. Roth, Automatic Extraction of Vortex Core Lines and Other LineType Features for Scientific Visualization. PhD Thesis, Swiss Federal Institute of Technology, ETH Zärich, 2000.
[33] N. Sauber, H. Theisel, and H.P. Seidel, Multifieldgraphs: An approach to visualizing correlations in multifield scalar data. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 917–924, 2006.
[34] G. Scheuermann and X. Tricoche, Topological Methods for Flow Visualization. In C. D. Hansen and C. R. Johnson, editors, The Visualization Handbook, pages 341–358. Elsevier, Amsterdam, 2005.
[35] C. R. Shalizi, Optimal nonlinear prediction of random fields on networks. In M. Morvan and É. Rémila, editors, Discrete Models for Complex Systems, DMCS'03, volume AB of DMTCS Proceedings, pages 11–30. Discrete Mathematics and Theoretical Computer Science, 2003.
[36] C. R. Shalizi, R. Haslinger, J.B. Rouquier, K. L. Klinkner, and C. Moore, Automatic filters for the detection of coherent structure in spatiotemporal systems. Physical Review E, 73: 036104, 2006.
[37] C. E. Shannon, A mathematical theory of communication. Bell System Technical Journal, 27: 379–423, July 1948.
[38] A. Telea and J. J. van Wijk, Simplified representation of vector fields. In VIS '99: Proceedings of the conference on Visualization '99, pages 35–42, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.
[39] S. Wolfram, Cellular Automata and Complexity: Collected Papers. AddisonWesley, 1994.
[40] P. Wong and R. Bergeron, Years of Multidimensional Multivariate Visualization. Scientific Visualization  Overviews, Methodologies and Techniques, IEEE Computer Society Press., 1997.