
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
William J. Schroeder, Fran?ois Bertel, Mathieu Malaterre, David Thompson, Philippe P. P?bay, Robert O'Bara, Saurabh Tendulkar, "Methods and Framework for Visualizing HigherOrder Finite Elements," IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 4, pp. 446460, July/August, 2006.  
BibTex  x  
@article{ 10.1109/TVCG.2006.74, author = {William J. Schroeder and Fran?ois Bertel and Mathieu Malaterre and David Thompson and Philippe P. P?bay and Robert O'Bara and Saurabh Tendulkar}, title = {Methods and Framework for Visualizing HigherOrder Finite Elements}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {12}, number = {4}, issn = {10772626}, year = {2006}, pages = {446460}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.74}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Methods and Framework for Visualizing HigherOrder Finite Elements IS  4 SN  10772626 SP446 EP460 EPD  446460 A1  William J. Schroeder, A1  Fran?ois Bertel, A1  Mathieu Malaterre, A1  David Thompson, A1  Philippe P. P?bay, A1  Robert O'Bara, A1  Saurabh Tendulkar, PY  2006 KW  Finite element KW  basis function KW  tessellation KW  framework. VL  12 JA  IEEE Transactions on Visualization and Computer Graphics ER   
Abstract—The finite element method is an important, widely used numerical technique for solving partial differential equations. This technique utilizes basis functions for approximating the geometry and the variation of the solution field over finite regions, or elements, of the domain. These basis functions are generally formed by combinations of polynomials. In the past, the polynomial order of the basis has been low—typically of linear and quadratic order. However, in recent years socalled
[1] G. Abram and L. Treinish, “An Extended Data Flow Architecture for Data Analysis and Visualization,” Proc. Conf. Visualization '95, pp. 263269, Oct. 1995.
[2] J.E. Akin and W.H. Gray, “Contouring on Isoparametric Elements,” Int'l J. Numerical Methods in Eng., vol. 11, pp. 18931897, 1977.
[3] I. Babuska and M. Suri, “The $p$ and $hp$ Versions of the Finite Element Method: Basic Principles and Properties,” SIAM Rev., vol. 36, pp. 578632, 1994.
[4] C.L. Bajaj, V. Pascucci, and D.R. Schikore, “Fast Isocontouring for Improved Interactivity,” VVS '96: Proc. 1996 Symp. Volume Visualization, pp. 39ff, 1996.
[5] C.L. Bajaj, V. Pascucci, and D.R. Schikore, “Seed Sets and Search Structures for Optimal Isocontour Extraction,” Technical Report 9935, Texas Inst. of Computational and Applied Math., Univ. of Texas at Austin, 1999.
[6] P. Burger and D. Gillies, Interactive Computer Graphics Functional, Procedural, and DeviceLevel Methods. AddisonWesley, 1989.
[7] A.J. Chung and A.J. Field, “A Simple Recursive Tessellator for Adaptive Surface Triangulation,” J. Graphics Tools: JGT, vol. 5, no. 3, pp. 19, 2000.
[8] R.D. Cook, D.S. Malkus, and M.E. Plesha, Concepts and Applications of Finite Element Analysis, third ed. JohnWiley, 1989.
[9] G. Far, Curves and Surfaces for Computer Aided Geometric Design. Academic Press, 1990.
[10] I.D. Faux and M.J. Pratt, Computational Geometry for Design and Manufacture. Ellis Horwood, 1979.
[11] P.J. Frey and P.L. George, Mesh Generation. Oxford & Paris, Hermes Science Publishing, 2000.
[12] R.S. Gallagher and J.C. Nagtegaal, “An Efficient 3D Visualization Technique for Finite Element Models and Other Coarse Volumes,” Computer Graphics, vol. 23, no. 3, July 1989.
[13] B. Haasdonk, M. Ohlberger, M. Rumpf, A. Schmidt, and K.G. Siebert, “Multiresolution Visualization of Higher Order Adaptive Finite Element Simulations,” Computing, vol. 70, no. 3, pp. 181204, July 2003.
[14] R.B. Haber, B. Lucas, and N. Collins, “A Data Model for Scientific Visualization with Provisions for Regular and Irregular Grids,” Proc. Conf. Visualization '91, pp. 298305, 1991.
[15] J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. PrenticeHall, 1987.
[16] IBM Corp., Data Explorer Reference Manual. 1991.
[17] L. Lapidus and G.F. Pinder, Concepts and Applications of Finite Element Analysis. JohnWiley, 1982.
[18] J.L. Meek and G. Beer, “Contour Plotting of Data Using Isoparametric Element Representations,” Int'l J. Numerical Methods in Eng., vol. 10, pp. 954957, 1974.
[19] M.E. Mortenson, Geometric Modeling. John Wiley & Sons, 1985.
[20] B. Nelson and R.M. Kirby, “RayTracing Polymorphic Multidomain Spectral/HP Elements for Isosurface Rendering,” IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 1, pp. 114125, Jan./Feb. 2006.
[21] G. Nielson and J. Sung, “Interval Volume Tetrahedrization,” Proc. Conf. Visualization '97, pp. 221228, 1997.
[22] P.P. Pébay and D. Thompson, “CommunicationFree Streaming Mesh Refinement,” J. Computing and Information Sciences in Eng., 2005.
[23] D. Ruprecht and H. Müller, “A Scheme for EdgeBased Adaptive Tetrahedron Subdivision,” Math. Visualization, H.C. Hege and K. Polthier, eds., pp. 6170, Springer Verlag, 1998.
[24] C.E. Scheidegger, S. Fleishman, and C.T. Silva, “Triangulating Point Set Surfaces with Bounded Error,” SGP '05: Proc. Eurographics Symp. Geometry Processing, July 2005.
[25] W.J. Schroeder, F. Bertel, M. Malaterre, D. Thompson, P. Pébay, R. O'Bara, and S. Tendulkar, “Framework for Visualzing HigherOrder Basis Functions,” Proc. Conf. Visualization '05, pp. 4350, 2005.
[26] W.J. Schroeder, B. Geveci, and M. Malaterre, “Compatible Triangulations of Spatial Decompositions,” Proc. Conf. Visualization '04, pp. 211218, 2004.
[27] W.J. Schroeder, K.M. Martin, and W.E. Lorensen, The Visualization Toolkit an ObjectOriented Approach to 3D Graphics, third ed., PrenticeHall, 2004.
[28] M.S. Shephard, S. Dey, and J.E. Flaherty, “A Straightforward Structure to Construct Shape Functions for Variable POrder Meshes,” Computer Methods in Applied Mechanics and Eng., vol. 147, pp. 209233, 1997.
[29] Silicon Graphics, Inc., Iris Explorer User's Guide. 1991.
[30] D. Thompson, R. Crawford, R. Khardekar, and P. Pébay, “Visualization of HigherOrder Finite Elements,” Technical Report SAND20041617, Sandia Nat'l Laboratories, 2004.
[31] D.C. Thompson and P.P. Pébay, “Performance of a Streaming Mesh Refinement Algorithm,” Sandia Report SAND20043858, Sandia Nat'l Laboratories, Aug. 2004.
[32] D.C. Thompson and P.P. Pébay, “Embarassingly Parallel Mesh Refinement,” Eng. with Computers, 2006.
[33] C. Upson, T. Faulhaber Jr., and D. Kamins et al., “The Application Visualization System: A Computational Environment for Scientific Visualization,” IEEE Computer Graphics and Applications, vol. 9, no. 4, pp. 3042, July 1989.
[34] M. van Kreveld, R. van Oostrum, C.L. Bajaj, V. Pascucci, and D.R. Shikore, “Contour Trees and Small Seed Sets for Isosurface Traversal,” Proc. 13th Ann. ACM Symp. Computational Geometry, pp. 212219, 1997.
[35] P.L. Williams, N.L. Max, and C.M. Stein, “A High Accuracy Volume Renderer for Unstructured Data,” IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 1, Jan. 1998.
[36] O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method— Volume 1, fourth ed., McGrawHill Book Co., 1987.