This Article 
 Bibliographic References 
 Add to: 
HDR VolVis: High Dynamic Range Volume Visualization
July/August 2006 (vol. 12 no. 4)
pp. 433-445

Abstract—In this paper, we present an interactive high dynamic range volume visualization framework (HDR VolVis) for visualizing volumetric data with both high spatial and intensity resolutions. Volumes with high dynamic range values require high precision computing during the rendering process to preserve data precision. Furthermore, it is desirable to render high resolution volumes with low opacity values to reveal detailed internal structures, which also requires high precision compositing. High precision rendering will result in a high precision intermediate image (also known as high dynamic range image). Simply rounding up pixel values to regular display scales will result in loss of computed details. Our method performs high precision compositing followed by dynamic tone mapping to preserve details on regular display devices. Rendering high precision volume data requires corresponding resolution in the transfer function. To assist the users in designing a high resolution transfer function on a limited resolution display device, we propose a novel transfer function specification interface with nonlinear magnification of the density range and logarithmic scaling of the color/opacity range. By leveraging modern commodity graphics hardware, multiresolution rendering techniques and out-of-core acceleration, our system can effectively produce an interactive visualization of large volume data, such as 2,048^3.

[1] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan, “Brook for GPUs: Stream Computing on Graphics Hardware,” ACM Trans. Graphics, vol. 23, no. 3, pp. 777-786, 2004.
[2] B. Cabral, N. Cam, and J. Foran, “Accelerated Volume Rendering and Tomographic Reconstruction Using Texture Mapping Hardware,” Proc. Symp. Volume Visualization, pp. 91-98, 1994.
[3] P.E. Debevec and J. Malik, “Recovering High Dynamic Range Radiance Maps from Photographs,” Proc. SIGGRAPH '97, pp. 369-378, 1997.
[4] K. Devlin, A. Chalmers, A. Wilkie, and W. Purgathofer, “STAR: Tone Reproduction and Physically Based Spectral Rendering,” Proc. Eurographics '02, pp. 101-123, 2002.
[5] F. Drago, W.L. Martens, K. Myszkowski, and H.-P. Seidel, “Perceptual Evaluation of Tone Mapping Operators,” Proc. ACM SIGGRAPH Conf. Abstract and Applications, 2003.
[6] F. Drago, K. Myszkowski, T. Annen, and N. Chiba, “Adaptive Logarithmic Mapping for Displaying High Contrast Scenes,” Computer Graphics Forum, vol. 22, no. 3, pp. 419-419, 2003.
[7] F. Durand and J. Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images,” Proc. SIGGRAPH '02, pp. 257-266, 2002.
[8] R. Fattal, D. Lischinski, and M. Werman, “Gradient Domain High Dynamic Range Compression,” Proc. SIGGRAPH '02, pp. 249-256, 2002.
[9] G.W. Furnas, “Generalized Fisheye Views,” Proc. SIGCHI Conf. Human Factors in Computing Systems, pp. 16-23, 1986.
[10] G.W. Furnas, “The FISHEYE View: A New Look at Structured Files,” Readings in Information Visualization: Using Vision to Think, pp. 312-330, 1999.
[11] A. Ghosh, M. Trentacoste, and W. Heidrich, “Volume Rendering for High Dynamic Range Displays,” Proc. EG/IEEE VGTC Workshop Volume Graphics '05, pp. 91-98, 2005.
[12] N. Goodnight, R. Wang, C. Woolley, and G. Humphreys, “Interactive Time-Dependent Tone Mapping Using Programmable Graphics Hardware,” Proc. 14th Eurographics Symp. Rendering, pp. 26-37, 2003.
[13] HDRshop,, 2006.
[14] M. Ikits, J. Kniss, A. Lefohn, and C. Hansen, GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics, chapter on volume rendering techniques, pp. 667-692, Addison Wesley, 2004.
[15] S.B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski, “High Dynamic Range Video,” ACM Trans. Graphics, vol. 22, no. 3, pp. 319-325, 2003.
[16] J. Kniss, G. Kindlmann, and C. Hansen, “Multidimensional Transfer Functions for Interactive Volume Rendering,” IEEE Trans. Visualization and Computer Graphics, vol. 8, no. 3, pp. 270-285, July/Sept. 2002.
[17] E. LaMar, B. Hamann, and K.I. Joy, “Multiresolution Techniques for Interactive Texture-Based Volume Visualization,” Proc. IEEE Conf. Visualization '99, pp. 355-361, 1999.
[18] J. Lamping, R. Rao, and P. Pirolli, “A Focus+Context Technique Based on Hyperbolic Geometry for Visualizing Large Hierarchies,” Proc. SIGCHI Conf. Human Factors in Computing Systems, pp. 401-408, 1995.
[19] G.W. Larson, H. Rushmeier, and C. Piatko, “A Visibility Matching Tone Reproduction Operator for High Dynamic Range Scenes,” IEEE Trans. Visualization and Computer Graphics, vol. 3, no. 4, pp. 291-306, Oct./Dec. 1997.
[20] P. Ledda, A. Chalmers, T. Troscianko, and H. Seetzen, “Evaluation of Tone Mapping Operators Using a High Dynamic Range Display,” ACM Trans. Graphics, vol. 24, no. 3, pp. 640-648, 2005.
[21] Y. Li, L. Sharan, and E.H. Adelson, “Compressing and Companding High Dynamic Range Images with Subband Architectures,” ACM Trans. Graphics, vol. 24, no. 3, pp. 836-844, 2005.
[22] R. Mantiuk, G. Krawczyk, K. Myszkowski, and H.-P. Seidel, “Perception-Motivated High Dynamic Range Video Encoding,” ACM Trans. Graphics, vol. 23, no. 3, pp. 733-741, 2004.
[23] T. Munzner, “H3: Laying Out Large Directed Graphs in 3D Hyperbolic Space,” Proc. 1997 IEEE Symp. Information Visualization, pp. 2-10, 1997.
[24] NVidia Corp., Nvidia Opengl Extension Specifications, , 2005.
[25] S.N. Pattanaik, J.A. Ferwerda, M.D. Fairchild, and D.P. Greenberg, “A Multiscale Model of Adaptation and Spatial Vision for Realistic Image Display,” Proc. SIGGRAPH '98, pp. 287-298, 1998.
[26] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler, “The VolumePro Real-Time Ray-Casting System,” Proc. SIGGRAPH '99, pp. 251-260, 1999.
[27] D. Porter, A. Pouquet, I. Sytine, and P. Woodward, “Turbulence in Compressible Flows,” Physica A, pp. 263-270, 1999.
[28] D. Porter, A. Pouquet, and P. Woodward, “Measures of Intermittency in Driven Supersonic Flows,” Physical Rev. E, vol. 66, 2002.
[29] D. Porter and P. Woodward, “3-D Simulations of Turbulent Compressible Convection,” The Astrophysical Supplement Series, 2000.
[30] S. Potts and T. Möller, “Transfer Functions on a Logarithmic Scale for Volume Rendering,” Proc. 2004 Conf. Graphics Interface, pp. 57-63, 2004.
[31] U. Rauschenbach, “The Rectangular Fish Eye View as an Efficient Method for the Transmission and Display of Large Images,” Proc. IEEE Int'l Conf. Image Processing, pp. 115-119, 1999.
[32] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic Tone Reproduction for Digital Images,” Proc. SIGGRAPH '02, pp. 267-276, 2002.
[33] E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic Range Imaging, First Edition: Acquisition, Display, and Image-Based Lighting. Morgan Kaufmann, 2005.
[34] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl, “Interactive Volume Rendering on Standard PC Graphics Hardware Using Multi-Textures and Multi-Stage Rasterization,” Proc. SIGGRAPH/EUROGRAPHICS Workshop Graphics Hardware, pp. 109-118, 2000.
[35] H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High Dynamic Range Display Systems,” ACM Trans. Graphics, vol. 23, no. 3, pp. 760-768, 2004.
[36] C.T. Silva, J.L.D. Comba, S.P. Callahan, and F.F. Bernardon, “A Survey of GPU-Based Volume Rendering of Unstructured Grids,” Brazilian J. Theoretic and Applied Computing (RITA), vol. 12, no. 2, pp. 9-29, Oct. 2005.
[37] A.R. Smith, “Color Gamut Transform Pairs,” Proc. SIGGRAPH '78, pp. 12-19, 1978.
[38] J. Tumblin and H. Rushmeier, “Tone Reproduction for Realistic Images,” IEEE Computer Graphics and Applications, vol. 13, no. 6, pp. 42-48, 1993.
[39] J. Tumblin and G. Turk, “LCIS: A Boundary Hierarchy for Detail-Preserving Contrast Reduction,” Proc. SIGGRAPH '99, pp. 83-90, 1999.
[40] G. Ward, “Real Pixels,” Graphics Gems II, J. Arvo, ed., pp. 80-83. Academic Press, 1991.
[41] M. Weiler, R. Westermann, C. Hansen, K. Zimmermann, and T. Ertl, “Level-of-Detail Volume Rendering via 3D Textures,” Proc. 2000 IEEE Symp. Volume Visualization, pp. 7-13, 2000.
[42] P.R. Woodward, “Numerical Methods for Astrophysicists,” Astrophysical Radiation Hydrodynamics, vol. 54, pp. 245-326, 1986.
[43] P.R. Woodward, S.E. Anderson, D.H. Porter, and A. Iyer, “Distributed Computing in the SHMOD Framework on the NSF Teragrid,” technical report, LCSE, UMN, Feb. 2004.
[44] P.R. Woodward and P. Colella, “The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks,” J. Computational Physics, vol. 54, pp. 115-173, 1984.
[45] X. Yuan, M.X. Nguyen, B. Chen, and D.H. Porter, “High Dynamic Range Volume Visualization,” Proc. IEEE Conf. Visualization '05, pp. 327-334, 2005.

Index Terms:
Volume visualization, high dynamic range, user interfaces, transfer function design, nonlinear magnification.
Xiaoru Yuan, Minh X. Nguyen, Baoquan Chen, David H. Porter, "HDR VolVis: High Dynamic Range Volume Visualization," IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 4, pp. 433-445, July-Aug. 2006, doi:10.1109/TVCG.2006.72
Usage of this product signifies your acceptance of the Terms of Use.