This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Melting and Burning Solids into Liquids and Gases
May/June 2006 (vol. 12 no. 3)
pp. 343-352

Abstract—We propose a novel technique for melting and burning solid materials, including the simulation of the resulting liquid and gas. The solid is simulated with traditional mesh-based techniques (triangles or tetrahedra) which enable robust handling of both deformable and rigid objects, collision and self-collision, rolling, friction, stacking, etc. The subsequently created liquid or gas is simulated with modern grid-based techniques, including vorticity confinement and the particle level set method. The main advantage of our method is that state-of-the-art techniques are used for both the solid and the fluid without compromising simulation quality when coupling them together or converting one into the other. For example, we avoid modeling solids as Eulerian grid-based fluids with high viscosity or viscoelasticity, which would preclude the handling of thin shells, self-collision, rolling, etc. Thus, our method allows one to achieve new effects while still using their favorite algorithms (and implementations) for simulating both solids and fluids, whereas other coupling algorithms require major algorithm and implementation overhauls and still fail to produce rich coupling effects (e.g., melting and burning solids).

[1] D. Terzopoulos, J. Platt, and K. Fleischer, “Heating and Melting Deformable Models (from Goop to Glop),” Graphics Interface, pp. 219-226, 1989.
[2] M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa, “Point Based Animation of Elastic, Plastic and Melting Objects,” Proc. 2004 ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp. 141-151, 2004.
[3] S. Premoze, T. Tasdizen, J. Bigler, A. Lefohn, and R. Whitaker, “Particle-Based Simulation of Fluids,” Computer Graphics Forum (Eurographics Proc.), vol. 22, no. 3, pp. 401-410, 2003.
[4] E. Guendelman, A. Selle, F. Losasso, and R. Fedkiw, “Coupling Water and Smoke to Thin Deformable and Rigid Shells,” ACM Trans. Graphics (SIGGRAPH Proc.), vol. 24, no. 3, pp. 973-981, 2005.
[5] M. Carlson, P.J. Mucha, and G. Turk, “Rigid Fluid: Animating the Interplay between Rigid Bodies and Fluid,” ACM Trans. Graphics (SIGGRAPH Proc.), vol. 23, pp. 377-384, 2004.
[6] M. Carlson, P. Mucha, R. Van Horn, and G. Turk, “Melting and Flowing,” Proc. ACM SIGGRAPH Symp. Computer Animation, pp. 167-174, 2002.
[7] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger, S. Hoon, and R. Fedkiw, “Directible Photorealistic Liquids,” Proc. 2004 ACM SIGGRAPH/Eurographics Symp. Computer Animimation, pp. 193-202, 2004.
[8] T.G. Goktekin, A.W. Bargteil, and J.F. O'Brien, “A Method for Animating Viscoelastic Fluids,” ACM Trans. Graphics (SIGGRAPH Proc.), vol. 23, pp. 463-467, 2004.
[9] R. Fedkiw, J. Stam, and H. Jensen, “Visual Simulation of Smoke,” Proc. ACM SIGGRAPH, pp. 15-22, 2001.
[10] D. Enright, S. Marschner, and R. Fedkiw, “Animation and Rendering of Complex Water Surfaces,” ACM Trans. Graphics (SIGGRAPH Proc.), vol. 21, no. 3, pp. 736-744, 2002.
[11] D. Nguyen, R. Fedkiw, and H. Jensen, “Physically Based Modeling and Animation of Fire,” ACM Trans. Graphics (SIGGRAPH Proc.), vol. 29, pp. 721-728, 2002.
[12] R. Bridson, R. Fedkiw, and J. Anderson, “Robust Treatment of Collisions, Contact and Friction for Cloth Animation,” ACM Trans. Graphics (SIGGRAPH Proc.), vol. 21, pp. 594-603, 2002.
[13] R. Bridson, S. Marino, and R. Fedkiw, “Simulation of Clothing with Folds and Wrinkles,” Proc. 2003 ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp. 28-36, 2003.
[14] E. Guendelman, R. Bridson, and R. Fedkiw, “Nonconvex Rigid Bodies with Stacking,” ACM Trans. Graphics (SIGGRAPH Proc.), vol. 22, no. 3, pp. 871-878, 2003.
[15] G. Irving, J. Teran, and R. Fedkiw, “Invertible Finite Elements for Robust Simulation of Large Deformation,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp. 131-140, 2004.
[16] N. Molino, Z. Bao, and R. Fedkiw, “A Virtual Node Algorithm for Changing Mesh Topology during Simulation,” ACM Trans. Graphics (SIGGRAPH Proc.), vol. 23, pp. 385-392, 2004.
[17] T. Sederberg and S. Parry, “Free-Form Deformations of Solid Geometric Models,” Computer Graphics (SIGGRAPH Proc.), pp. 151-160, 1986.
[18] P. Faloutsos, M. van de Panne, and D. Terzopoulos, “Dynamic Free-Form Deformations for Animation Synthesis,” IEEE Trans. Visualization and Computer Graphics, vol. 3, no. 3, pp. 201-214, July-Sept. 1997.
[19] S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popović, “A Multiresolution Framework for Dynamic Deformations,” Proc. ACM SIGGRAPH Symp. Computer Animation, pp. 41-48, 2002.
[20] S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popović, “Interactive Skeleton-Driven Dynamic Deformations,” ACM Trans. Graph. (SIGGRAPH Proc.), vol. 21, pp. 586-593, 2002.
[21] M. Müller, M. Teschner, and M. Gross, “Physically-Based Simulation of Objects Represented by Surface Meshes,” Proc. Computer Graphics Int'l, pp. 156-165, June 2004.
[22] D. James, J. Barbic, and C. Twigg, “Squashing Cubes: Automating Deformable Model Construction for Graphics,” Proc. SIGGRAPH 2004 Sketches & Applications, 2004.
[23] Z. Melek and J. Keyser, “Interactive Simulation of Burning Objects,” Proc. Pacific Graphics Symp., pp. 462-466, 2003.
[24] Z. Melek and J. Keyser, “Multi-Representation Interaction for Physically Based Modeling,” Proc. ACM Symp. Solid and Physical Modeling, pp. 187-196, 2005.
[25] Y. Zhao, X. Wei, Z. Fan, A. Kaufman, and H. Qin, “Voxels on Fire,” Proc. IEEE Visualization Conf., pp. 271-278, 2003.
[26] F. Losasso, F. Gibou, and R. Fedkiw, “Simulating Water and Smoke with an Octree Data Structure,” ACM Trans. Graphics (SIGGRAPH Proc.), vol. 23, pp. 457-462, 2004.
[27] N. Foster and D. Metaxas, “Modeling the Motion of a Hot, Turbulent Gas,” Proc. of SIGGRAPH '97, pp. 181-188, 1997.
[28] J. Stam, “Stable Fluids,” Proc. SIGGRAPH '99, pp. 121-128, 1999.
[29] A. Lamorlette and N. Foster, “Structural Modeling of Natural Flames,” ACM Trans. Graphics (SIGGRAPH Proc.), vol. 21, no. 3, pp. 729-735, 2002.
[30] B.E. Feldman, J.F. O'Brien, and O. Arikan, “Animating Suspended Particle Explosions,” ACM Trans. Graphics (SIGGRAPH Proc.), vol. 22, no. 3, pp. 708-715, 2003.
[31] N. Rasmussen, D. Nguyen, W. Geiger, and R. Fedkiw, “Smoke Simulation for Large Scale Phenomena,” ACM Trans. Graphics (SIGGRAPH Proc.), vol. 22, pp. 703-707, 2003.
[32] G. Yngve, J. O'Brien, and J. Hodgins, “Animating Explosions,” Proc. SIGGRAPH 2000, vol. 19, pp. 29-36, 2000.
[33] A. Treuille, A. McNamara, Z. Popović, and J. Stam, “Keyframe Control of Smoke Simulations,” ACM Trans. Graphics (SIGGRAPH Proc.), vol. 22, no. 3, pp. 716-723, 2003.
[34] R. Fattal and D. Lischinski, “Target-Driven Smoke Animation,” ACM Trans. Graph. (SIGGRAPH Proc.), vol. 23, pp. 441-448, 2004.
[35] J. Stam, “Flows on Surfaces of Arbitrary Topology,” ACM Trans. Graphics (SIGGRAPH Proc.), vol. 22, pp. 724-731, 2003.
[36] A. Selle, N. Rasmussen, and R. Fedkiw, “A Vortex Particle Method for Smoke, Water and Explosions,” ACM Trans. Graphics (SIGGRAPH Proc.), vol. 24, no. 3, pp. 910-914, 2005.
[37] M. Kass and G. Miller, “Rapid, Stable Fluid Dynamics for Computer Graphics,” Computer Graphics (Proc. SIGGRAPH '90), vol. 24, no. 4, pp. 49-57, 1990.
[38] J. Chen and N. Lobo, “Toward Interactive-Rate Simulation of Fluids with Moving Obstacles Using the Navier-Stokes Equations,” Computer Graphics and Image Processing, vol. 57, pp. 107-116, 1994.
[39] N. Foster and D. Metaxas, “Realistic Animation of Liquids,” Graphics Models and Image Processing, vol. 58, pp. 471-483, 1996.
[40] N. Foster and D. Metaxas, “Controlling Fluid Animation,” Computer Graphics Int'l 1997, pp. 178-188, 1997.
[41] N. Foster and R. Fedkiw, “Practical Animation of Liquids,” Proc. ACM SIGGRAPH 2001, pp. 23-30, 2001.
[42] J.-M. Hong and C.-H. Kim, “Animation of Bubbles in Liquid,” Computer Graphics Forum (Eurographics Proc.), vol. 22, no. 3, pp. 253-262, 2003.
[43] A. McNamara, A. Treuille, Z. Popović, and J. Stam, “Fluid Control Using the Adjoint Method,” ACM Trans. Graphics (SIGGRAPH Proc.), pp. 449-456, 2004.
[44] V. Mihalef, D. Metaxas, and M. Sussman, “Animation and Control of Breaking Waves,” Proc. 2004 ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp. 315-324, 2004.
[45] L. Shi and Y. Yu, “Taming Liquids for Rapidly Changing Targets,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp. 229-236, 2005.
[46] O. Génevaux, A. Habibi, and J.-M. Dischler, “Simulating Fluid-Solid Interaction,” Graphics Interface, pp. 31-38, June 2003.
[47] M. Müller, S. Schirm, M. Teschner, B. Heidelberger, and M. Gross, “Interaction of Fluids with Deformable Solids,” J. Computer Animation and Virtual Worlds, vol. 15, nos. 3-4, pp. 159-171, July 2004.
[48] H. Wang, P. Mucha, and G. Turk, “Water Drops on Surfaces,” ACM Trans. Graphics (SIGGRAPH Proc.), vol. 24, no. 3, pp. 921-929, 2005.
[49] Y. Zhu and R. Bridson, “Animating Sand as a Fluid,” ACM Trans. Graphics (SIGGRAPH Proc.), vol. 24, no. 3, pp. 965-971, 2005.
[50] J.-M. Hong and C.-H. Kim, “Discontinuous Fluids,” ACM Trans. Graphics (SIGGRAPH Proc.), vol. 24, no. 3, pp. 915-919, 2005.
[51] N. Molino, R. Bridson, J. Teran, and R. Fedkiw, “A Crystalline, Red Green Strategy for Meshing Highly Deformable Objects with Tetrahedra,” Proc. 12th Int'l Conf. Meshing Roundtable, pp. 103-114, 2003.
[52] R. Bridson, J. Teran, N. Molino, and R. Fedkiw, “Adaptive Physics Based Tetrahedral Mesh Generation Using Level Sets,” Eng. with Computers, 2005.
[53] M. Müller, D. Charypar, and M. Gross, “Particle-Based Fluid Simulation for Interactive Applications,” Proc. 2003 ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp. 154-159, 2003.

Index Terms:
Physically-based modeling, melting, burning, solid, liquid, gas, phase change, Lagrangian mesh, Eulerian grid, adaptive mesh.
Citation:
Frank Losasso, Geoffrey Irving, Eran Guendelman, Ron Fedkiw, "Melting and Burning Solids into Liquids and Gases," IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 3, pp. 343-352, May-June 2006, doi:10.1109/TVCG.2006.51
Usage of this product signifies your acceptance of the Terms of Use.