
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Sung W. Park, Lars Linsen, Oliver Kreylos, John D. Owens, Bernd Hamann, "Discrete Sibson Interpolation," IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 2, pp. 243253, March/April, 2006.  
BibTex  x  
@article{ 10.1109/TVCG.2006.27, author = {Sung W. Park and Lars Linsen and Oliver Kreylos and John D. Owens and Bernd Hamann}, title = {Discrete Sibson Interpolation}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {12}, number = {2}, issn = {10772626}, year = {2006}, pages = {243253}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.27}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Discrete Sibson Interpolation IS  2 SN  10772626 SP243 EP253 EPD  243253 A1  Sung W. Park, A1  Lars Linsen, A1  Oliver Kreylos, A1  John D. Owens, A1  Bernd Hamann, PY  2006 KW  Scattered data interpolation KW  naturalneighbor interpolation KW  graphics hardware. VL  12 JA  IEEE Transactions on Visualization and Computer Graphics ER   
Abstract—Naturalneighbor interpolation methods, such as Sibson's method, are wellknown schemes for multivariate data fitting and reconstruction. Despite its many desirable properties, Sibson's method is computationally expensive and difficult to implement, especially when applied to higherdimensional data. The main reason for both problems is the method's implementation based on a Voronoi diagram of all data points. We describe a discrete approach to evaluating Sibson's interpolant on a regular grid, based solely on finding nearest neighbors and rendering and blending
[1] P. Alfeld, Mathematical Methods in Computer Aided Geometric Design, pp. 133, 1989.
[2] G. Farin, “Surfaces over Dirichlet Tessellations,” Computer Aided Geometric Design, vol. 7, nos. 14, pp. 281292, 1990.
[3] K.E. HoffIII, J. Keyser, M. Lin, D. Manocha, and T. Culver, “Fast Computation of Generalized Voronoi Diagrams Using Graphics Hardware,” Proc. SIGGRAPH '99 Conf., pp. 277286, Aug. 1999.
[4] W. Heidrich and H.P. Seidel, “Realistic, HardwareAccelerated Shading and Lighting,” Proc. SIGGRAPH '99 Conf., pp. 171178, Aug. 1999.
[5] M.J. Harris, G. Coombe, T. Scheuermann, and A. Lastra, “PhysicallyBased Visual Simulation on Graphics Hardware,” Proc. Graphics Hardware 2002 Conf., pp. 109118, Sept. 2002.
[6] J. Krüger and R. Westermann, “Linear Algebra Operators for GPU Implementation of Numerical Algorithms,” ACM Trans. Graphics, vol. 22, pp. 908916, July 2003.
[7] C.J. Thompson, S. Hahn, and M. Oskin, “Using Modern Graphics Architectures for GeneralPurpose Computing: A Framework and Analysis,” Proc. 35th Ann. Int'l Symp. Microarchitecture, pp. 306317, Nov. 2002.
[8] I. Amidror, “Scattered Data Interpolation Methods for Electronic Imaging Systems: A Survey,” J. Electronic Imaging, vol. 2, no. 11, pp. 157176, 2002.
[9] T.A. Foley, D.A. Lane, G.M. Nielson, R. Franke, and H. Hagen, “Interpolation of Scattered Data on Closed Surfaces,” Computer Aided Geometric Design, vol. 7, nos. 14, pp. 303312, 1990.
[10] R. Franke and G. Nielson, Geometric Modeling: Methods and Applications, pp. 131160, SpringerVerlag, 1991.
[11] S.K. Lodha and R. Franke, “Scattered Data Techniques for Surfaces,” Proc. Dagstuhl Conf. Scientific Visualization, pp. 182222, 1999.
[12] G. Nielson, “Scattered Data Modeling,” IEEE Computer Graphics and Applications, vol. 13, no. 1, pp. 6070, Jan. 1993.
[13] G.M. Nielson, T.A. Foley, B. Hamann, and D. Lane, “Visualizing and Modeling Scattered Multivariate Data,” IEEE Computer Graphics and Applications, vol. 11, no. 3, pp. 4755, May 1991.
[14] D. Shepard, “A TwoDimensional Interpolation Function for Irregularly Spaced Data,” Proc. 23rd Nat'l Conf., pp. 517524, Aug. 1968.
[15] R. Sibson, “A Vector Identity for the Dirichlet Tessellation,” Math. Proc. Cambridge Philosophical Soc., vol. 87, no. 1, pp. 151155, 1980.
[16] S.J. Owen, “An Implementation of Natural Neighbor Interpolation in Three Dimensions,” master's thesis, Brigham Young Univ., 1992.
[17] N. Sukumar, B. Morann, and T. Belyschko, “The Natural Element Method in Solid Mechanics,” Int'l J. Numerical Methods in Eng., vol. 43, pp. 839887, Nov. 1998.
[18] C. Sigg, R. Peikert, and M. Gross, “Signed Distance Transform Using Graphics Hardware,” Proc. IEEE Visualization '03 Conf., 2003.
[19] Y. Jang, M. Weiler, M. Hopf, J. Huang, D.S. Ebert, K.P. Gaither, and T. Ertl, “Interactively Visualizing Procedurally Encoded Scalar Fields,” Proc. EG/IEEE TCVG Symp. Visualization VisSym '04, O. Deussen et al. eds., 2004.
[20] Q. Fan, A. Efrat, V. Koltun, S. Krishnan, and S. Venkatasubramanian, “Hardware Assisted Natural Neighbour Interpolation,” Proc. Seventh Workshop Algorithm Eng. and Experiments (ALENEX), 2005.
[21] Y.L.H. Yee, “An Implementation of Natural Neighbor Interpolation in Three Dimensions,” master's thesis, Brigham Young Univ., 1992.
[22] J.D. Boissonnat and F. Cazals, “Smooth Surface Reconstruction Via Natural Neighbour Interpolation Of Distance Functions,” Proc. 16th Ann. Symp. Computational Geometry, pp. 223232, 2000.
[23] O. Kreylos and B. Hamann, “On Simulated Annealing and the Construction of Linear Spline Approximations for Scattered Data,” Proc. Joint EUROGRAPHICS and IEEE TVCG Symp. Visualization (VisSym '99), E. Groeller et al., eds., pp. 189198, 1999.
[24] C.S. Co, B. Heckel, H. Hagen, B. Hamann, and K.I. Joy, “Hierarchical Clustering for Unstructured Volumetric Scalar Fields,” Proc. IEEE Visualization 2003 Conf., G. Turk et al., eds., pp. 325332, Oct. 2003.