
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Hamish Carr, Torsten M?ller, Jack Snoeyink, "Artifacts Caused by Simplicial Subdivision," IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 2, pp. 231242, March/April, 2006.  
BibTex  x  
@article{ 10.1109/TVCG.2006.22, author = {Hamish Carr and Torsten M?ller and Jack Snoeyink}, title = {Artifacts Caused by Simplicial Subdivision}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {12}, number = {2}, issn = {10772626}, year = {2006}, pages = {231242}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.22}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Artifacts Caused by Simplicial Subdivision IS  2 SN  10772626 SP231 EP242 EPD  231242 A1  Hamish Carr, A1  Torsten M?ller, A1  Jack Snoeyink, PY  2006 KW  Interpolation KW  approximation of surfaces and contours KW  image representation KW  volumetric representation KW  visualization techniques and methodologies KW  volume visualization. VL  12 JA  IEEE Transactions on Visualization and Computer Graphics ER   
Abstract—We review schemes for dividing cubic cells into simplices (tetrahedra) for interpolating from sampled data to
[1] W.E. Lorenson and H.E. Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” Computer Graphics, vol. 21, no. 4, pp. 163169, 1987.
[2] P. Shirley and A. Tuchman, “A Polygonal Approximation to Direct Scalar Volume Rendering,” Computer Graphics, vol. 24, no. 5, pp. 6370, 1990.
[3] G.M. Nielson, “On Marching Cubes,” IEEE Trans. Visualization and Computer Graphics, vol. 9, no. 3, pp. 283297, JulySept. 2003.
[4] H. Carr, J. Snoeyink, and U. Axen, “Computing Contour Trees in All Dimensions,” Computational Geometry: Theory and Applications, vol. 24, no. 2, pp. 7594, 2003.
[5] N.L. Max, P. Hanrahan, and R.A. Crawfis, “Area and Volume Coherence for Efficient Visualization of 3D Scalar Functions,” Computer Graphics, vol. 24, no. 5, pp. 2733, 1990.
[6] C. Stein, B. Becker, and N.L. Max, “Sorting and Hardware Assisted Rendering for Volume Visualization,” Proc. Visualization 1994 Conf., pp. 8389, 1994.
[7] M. van Kreveld, R. van Oostrum, C.L. Bajaj, V. Pascucci, and D.R. Schikore, “Contour Trees and Small Seed Sets for Isosurface Traversal,” Proc. 13th ACM Symp. Computational Geometry, pp. 212220, 1997.
[8] G. Albertelli and R.A. Crawfis, “Efficient Subdivision of FiniteElement Data Sets into Consistent Tetrahedra,” Proc. Visualization 1997 Conf., pp. 213219, 1997.
[9] J. Bloomenthal, “Polygonization of Implicit Surfaces,” Computer Aided Geometric Design, pp. 341355, 1988.
[10] P. Ning and J. Bloomenthal, “An Evaluation of Implicit Surface Tilers,” IEEE Computer Graphics and Applications, vol. 13, pp. 3341, 1993.
[11] G.M. Nielson and R. Franke, “Computing the Separating Surface for Segmented Data,” Proc. Visualization 1997 Conf., pp. 229233, 1997.
[12] G.M. Nielson and J. Sung, “Interval Volume Tetrahedrization,” Proc. Visualization 1997 Conf., pp. 221228 1997.
[13] E.L. Allgower and S. Gnutzmann, “Simplicial Pivoting for Mesh Generation of Implicitly Defined Surfaces,” Computer Aided Geometric Design, vol. 8, pp. 305325, 1991.
[14] H. Freudenthal, “Simplizialzerlegungen von Beschränkter Flachheit,” Annals of Math., vol. 43, no. 3, pp. 580582, 1942.
[15] S. Lefschetz, Transformations of Complexes. Princeton Univ. Press, pp. 110141, 1949.
[16] M.P. Garrity, “Raytracing Irregular Volume Data,” Computer Graphics, vol. 24, no. 5, pp. 3540, 1990.
[17] C. Weigle and D.C. Banks, “ComplexValued Contour Meshing,” Proc. Visualization 1996 Conf., pp. 173181, 1996.
[18] Y. Zhou, B. Chen, and A.E. Kaufman, “Multiresolution Tetrahedral Framework for Visualizing Regular Volume Data,” Proc. Visualization 1997 Conf., pp. 135142, 1997.
[19] H. Carr, T. Möller, and J. Snoeyink, “Simplicial Subdivisions and Sampling Artifacts,” Proc. Visualization 2001 Conf., pp. 99106, 2001.
[20] B. Natarajan, “On Generating Topologically Consistent Isosurfaces from Uniform Samples,” Visual Computer, vol. 11, pp. 5262, 1994.
[21] H. Carr, T. Theubbl, and T. Möller, “Isosurfaces on Optimal Regular Samples,” Proc. Eurographics Visualization Symp. 2003, pp. 3948, 2003.
[22] S. Röttger, M. Kraus, and T. Ertl, “HardwareAccelerated Volume and Isosurface Rendering Based on CellProjection,” Proc. Visualization 2000 Conf., pp. 109116, 2000.
[23] S. Röttger and T. Ertl, “A TwoStep Approach for Interactive PreIntegrated Volume and Isosurface Rendering of Unstructured Grids,” Proc. Volume Visualization 2002 Conf., pp. 2328, 2002.
[24] B. Wylie, K. Moreland, L.A. Fisk, and P. Crossno, “Tetrahedral Projection Using Vertex Shaders,” Proc. Volume Visualization 2002 Conf., pp. 712, 2002.
[25] M. Kraus, W. Qiao, and D.S. Ebert, “Projecting Tetrahedra without Rendering Artifacts,” Proc. Visualization 2004 Conf., pp. 2734, 2004.
[26] D.E. Dudgeon and R. Mersereau, Multidimensional Digital Signal Processing. PrenticeHall, 1984.
[27] A. Oppenheim and R. Schafer, DiscreteTime Signal Processing. PrenticeHall, 1989.
[28] T. Möller, K. Mueller, Y. Kurzion, R. Machiraju, and R. Yagel, “Design of Accurate and Smooth Filters for Function and Derivative Reconstruction,” Proc. Volume Visualization 1998 Conf., pp. 143151, 1998.