This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Artifacts Caused by Simplicial Subdivision
March/April 2006 (vol. 12 no. 2)
pp. 231-242

Abstract—We review schemes for dividing cubic cells into simplices (tetrahedra) for interpolating from sampled data to {\hbox{\rlap{I}\kern 2.0pt{\hbox{R}}}}^3, present visual and geometric artifacts generated in isosurfaces and volume renderings, and discuss how these artifacts relate to the filter kernels corresponding to the subdivision schemes.

[1] W.E. Lorenson and H.E. Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” Computer Graphics, vol. 21, no. 4, pp. 163-169, 1987.
[2] P. Shirley and A. Tuchman, “A Polygonal Approximation to Direct Scalar Volume Rendering,” Computer Graphics, vol. 24, no. 5, pp. 63-70, 1990.
[3] G.M. Nielson, “On Marching Cubes,” IEEE Trans. Visualization and Computer Graphics, vol. 9, no. 3, pp. 283-297, July-Sept. 2003.
[4] H. Carr, J. Snoeyink, and U. Axen, “Computing Contour Trees in All Dimensions,” Computational Geometry: Theory and Applications, vol. 24, no. 2, pp. 75-94, 2003.
[5] N.L. Max, P. Hanrahan, and R.A. Crawfis, “Area and Volume Coherence for Efficient Visualization of 3D Scalar Functions,” Computer Graphics, vol. 24, no. 5, pp. 27-33, 1990.
[6] C. Stein, B. Becker, and N.L. Max, “Sorting and Hardware Assisted Rendering for Volume Visualization,” Proc. Visualization 1994 Conf., pp. 83-89, 1994.
[7] M. van Kreveld, R. van Oostrum, C.L. Bajaj, V. Pascucci, and D.R. Schikore, “Contour Trees and Small Seed Sets for Isosurface Traversal,” Proc. 13th ACM Symp. Computational Geometry, pp. 212-220, 1997.
[8] G. Albertelli and R.A. Crawfis, “Efficient Subdivision of Finite-Element Data Sets into Consistent Tetrahedra,” Proc. Visualization 1997 Conf., pp. 213-219, 1997.
[9] J. Bloomenthal, “Polygonization of Implicit Surfaces,” Computer Aided Geometric Design, pp. 341-355, 1988.
[10] P. Ning and J. Bloomenthal, “An Evaluation of Implicit Surface Tilers,” IEEE Computer Graphics and Applications, vol. 13, pp. 33-41, 1993.
[11] G.M. Nielson and R. Franke, “Computing the Separating Surface for Segmented Data,” Proc. Visualization 1997 Conf., pp. 229-233, 1997.
[12] G.M. Nielson and J. Sung, “Interval Volume Tetrahedrization,” Proc. Visualization 1997 Conf., pp. 221-228 1997.
[13] E.L. Allgower and S. Gnutzmann, “Simplicial Pivoting for Mesh Generation of Implicitly Defined Surfaces,” Computer Aided Geometric Design, vol. 8, pp. 305-325, 1991.
[14] H. Freudenthal, “Simplizialzerlegungen von Beschränkter Flachheit,” Annals of Math., vol. 43, no. 3, pp. 580-582, 1942.
[15] S. Lefschetz, Transformations of Complexes. Princeton Univ. Press, pp. 110-141, 1949.
[16] M.P. Garrity, “Raytracing Irregular Volume Data,” Computer Graphics, vol. 24, no. 5, pp. 35-40, 1990.
[17] C. Weigle and D.C. Banks, “Complex-Valued Contour Meshing,” Proc. Visualization 1996 Conf., pp. 173-181, 1996.
[18] Y. Zhou, B. Chen, and A.E. Kaufman, “Multiresolution Tetrahedral Framework for Visualizing Regular Volume Data,” Proc. Visualization 1997 Conf., pp. 135-142, 1997.
[19] H. Carr, T. Möller, and J. Snoeyink, “Simplicial Subdivisions and Sampling Artifacts,” Proc. Visualization 2001 Conf., pp. 99-106, 2001.
[20] B. Natarajan, “On Generating Topologically Consistent Isosurfaces from Uniform Samples,” Visual Computer, vol. 11, pp. 52-62, 1994.
[21] H. Carr, T. Theubbl, and T. Möller, “Isosurfaces on Optimal Regular Samples,” Proc. Eurographics Visualization Symp. 2003, pp. 39-48, 2003.
[22] S. Röttger, M. Kraus, and T. Ertl, “Hardware-Accelerated Volume and Isosurface Rendering Based on Cell-Projection,” Proc. Visualization 2000 Conf., pp. 109-116, 2000.
[23] S. Röttger and T. Ertl, “A Two-Step Approach for Interactive Pre-Integrated Volume and Isosurface Rendering of Unstructured Grids,” Proc. Volume Visualization 2002 Conf., pp. 23-28, 2002.
[24] B. Wylie, K. Moreland, L.A. Fisk, and P. Crossno, “Tetrahedral Projection Using Vertex Shaders,” Proc. Volume Visualization 2002 Conf., pp. 7-12, 2002.
[25] M. Kraus, W. Qiao, and D.S. Ebert, “Projecting Tetrahedra without Rendering Artifacts,” Proc. Visualization 2004 Conf., pp. 27-34, 2004.
[26] D.E. Dudgeon and R. Mersereau, Multidimensional Digital Signal Processing. Prentice-Hall, 1984.
[27] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing. Prentice-Hall, 1989.
[28] T. Möller, K. Mueller, Y. Kurzion, R. Machiraju, and R. Yagel, “Design of Accurate and Smooth Filters for Function and Derivative Reconstruction,” Proc. Volume Visualization 1998 Conf., pp. 143-151, 1998.

Index Terms:
Interpolation, approximation of surfaces and contours, image representation, volumetric representation, visualization techniques and methodologies, volume visualization.
Citation:
Hamish Carr, Torsten M?ller, Jack Snoeyink, "Artifacts Caused by Simplicial Subdivision," IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 2, pp. 231-242, March-April 2006, doi:10.1109/TVCG.2006.22
Usage of this product signifies your acceptance of the Terms of Use.