This Article 
 Bibliographic References 
 Add to: 
Artifacts Caused by Simplicial Subdivision
March/April 2006 (vol. 12 no. 2)
pp. 231-242

Abstract—We review schemes for dividing cubic cells into simplices (tetrahedra) for interpolating from sampled data to {\hbox{\rlap{I}\kern 2.0pt{\hbox{R}}}}^3, present visual and geometric artifacts generated in isosurfaces and volume renderings, and discuss how these artifacts relate to the filter kernels corresponding to the subdivision schemes.

[1] W.E. Lorenson and H.E. Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” Computer Graphics, vol. 21, no. 4, pp. 163-169, 1987.
[2] P. Shirley and A. Tuchman, “A Polygonal Approximation to Direct Scalar Volume Rendering,” Computer Graphics, vol. 24, no. 5, pp. 63-70, 1990.
[3] G.M. Nielson, “On Marching Cubes,” IEEE Trans. Visualization and Computer Graphics, vol. 9, no. 3, pp. 283-297, July-Sept. 2003.
[4] H. Carr, J. Snoeyink, and U. Axen, “Computing Contour Trees in All Dimensions,” Computational Geometry: Theory and Applications, vol. 24, no. 2, pp. 75-94, 2003.
[5] N.L. Max, P. Hanrahan, and R.A. Crawfis, “Area and Volume Coherence for Efficient Visualization of 3D Scalar Functions,” Computer Graphics, vol. 24, no. 5, pp. 27-33, 1990.
[6] C. Stein, B. Becker, and N.L. Max, “Sorting and Hardware Assisted Rendering for Volume Visualization,” Proc. Visualization 1994 Conf., pp. 83-89, 1994.
[7] M. van Kreveld, R. van Oostrum, C.L. Bajaj, V. Pascucci, and D.R. Schikore, “Contour Trees and Small Seed Sets for Isosurface Traversal,” Proc. 13th ACM Symp. Computational Geometry, pp. 212-220, 1997.
[8] G. Albertelli and R.A. Crawfis, “Efficient Subdivision of Finite-Element Data Sets into Consistent Tetrahedra,” Proc. Visualization 1997 Conf., pp. 213-219, 1997.
[9] J. Bloomenthal, “Polygonization of Implicit Surfaces,” Computer Aided Geometric Design, pp. 341-355, 1988.
[10] P. Ning and J. Bloomenthal, “An Evaluation of Implicit Surface Tilers,” IEEE Computer Graphics and Applications, vol. 13, pp. 33-41, 1993.
[11] G.M. Nielson and R. Franke, “Computing the Separating Surface for Segmented Data,” Proc. Visualization 1997 Conf., pp. 229-233, 1997.
[12] G.M. Nielson and J. Sung, “Interval Volume Tetrahedrization,” Proc. Visualization 1997 Conf., pp. 221-228 1997.
[13] E.L. Allgower and S. Gnutzmann, “Simplicial Pivoting for Mesh Generation of Implicitly Defined Surfaces,” Computer Aided Geometric Design, vol. 8, pp. 305-325, 1991.
[14] H. Freudenthal, “Simplizialzerlegungen von Beschränkter Flachheit,” Annals of Math., vol. 43, no. 3, pp. 580-582, 1942.
[15] S. Lefschetz, Transformations of Complexes. Princeton Univ. Press, pp. 110-141, 1949.
[16] M.P. Garrity, “Raytracing Irregular Volume Data,” Computer Graphics, vol. 24, no. 5, pp. 35-40, 1990.
[17] C. Weigle and D.C. Banks, “Complex-Valued Contour Meshing,” Proc. Visualization 1996 Conf., pp. 173-181, 1996.
[18] Y. Zhou, B. Chen, and A.E. Kaufman, “Multiresolution Tetrahedral Framework for Visualizing Regular Volume Data,” Proc. Visualization 1997 Conf., pp. 135-142, 1997.
[19] H. Carr, T. Möller, and J. Snoeyink, “Simplicial Subdivisions and Sampling Artifacts,” Proc. Visualization 2001 Conf., pp. 99-106, 2001.
[20] B. Natarajan, “On Generating Topologically Consistent Isosurfaces from Uniform Samples,” Visual Computer, vol. 11, pp. 52-62, 1994.
[21] H. Carr, T. Theubbl, and T. Möller, “Isosurfaces on Optimal Regular Samples,” Proc. Eurographics Visualization Symp. 2003, pp. 39-48, 2003.
[22] S. Röttger, M. Kraus, and T. Ertl, “Hardware-Accelerated Volume and Isosurface Rendering Based on Cell-Projection,” Proc. Visualization 2000 Conf., pp. 109-116, 2000.
[23] S. Röttger and T. Ertl, “A Two-Step Approach for Interactive Pre-Integrated Volume and Isosurface Rendering of Unstructured Grids,” Proc. Volume Visualization 2002 Conf., pp. 23-28, 2002.
[24] B. Wylie, K. Moreland, L.A. Fisk, and P. Crossno, “Tetrahedral Projection Using Vertex Shaders,” Proc. Volume Visualization 2002 Conf., pp. 7-12, 2002.
[25] M. Kraus, W. Qiao, and D.S. Ebert, “Projecting Tetrahedra without Rendering Artifacts,” Proc. Visualization 2004 Conf., pp. 27-34, 2004.
[26] D.E. Dudgeon and R. Mersereau, Multidimensional Digital Signal Processing. Prentice-Hall, 1984.
[27] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing. Prentice-Hall, 1989.
[28] T. Möller, K. Mueller, Y. Kurzion, R. Machiraju, and R. Yagel, “Design of Accurate and Smooth Filters for Function and Derivative Reconstruction,” Proc. Volume Visualization 1998 Conf., pp. 143-151, 1998.

Index Terms:
Interpolation, approximation of surfaces and contours, image representation, volumetric representation, visualization techniques and methodologies, volume visualization.
Hamish Carr, Torsten M?ller, Jack Snoeyink, "Artifacts Caused by Simplicial Subdivision," IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 2, pp. 231-242, March-April 2006, doi:10.1109/TVCG.2006.22
Usage of this product signifies your acceptance of the Terms of Use.