This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Visualization of Boundaries in Volumetric Data Sets Using LH Histograms
March/April 2006 (vol. 12 no. 2)
pp. 208-218

Abstract—A crucial step in volume rendering is the design of transfer functions that will highlight those aspects of the volume data that are of interest to the user. For many applications, boundaries carry most of the relevant information. Reliable detection of boundaries is often hampered by limitations of the imaging process, such as blurring and noise. We present a method to identify the materials that form the boundaries. These materials are then used in a new domain that facilitates interactive and semiautomatic design of appropriate transfer functions. We also show how the obtained boundary information can be used in region-growing-based segmentation.

[1] M. Levoy, “Display of Surfaces From Volume Data,” IEEE Computer Graphics and Applications, vol. 8, no. 3, pp. 29-37, 1988.
[2] G. Kindlmann and J.W. Durkin, “Semiautomatic Generation of Transfer Functions for Direct Volume Rendering,” Proc. IEEE Symp. Volume Visualization, pp. 79-86, 1998.
[3] J. Kniss, G. Kindlmann, and C. Hansen, “Interactive Volume Rendering Using Multidimensional Transfer Functions and Direct Manipulation Widgets,” Proc. IEEE Visualization Conf., pp. 255-262, 2001.
[4] E.B. Lum and K.L. Ma, “Lighting Transfer Functions Using Gradient Aligned Sampling,” Proc. IEEE Visualization Conf., pp. 289-296, 2004.
[5] S. Fang, T. Biddlecome, and M. Tuceryan, “Image-Based Transfer Function Design for Data Exploration in Volume Visualization,” Proc. IEEE Visualization Conf., pp. 319-326, 1998.
[6] H. Pfister, B. Lorensen, C. Bajaj, G. Kindlmann, W. Schroeder, L.S. Avila, K. Martin, R. Machiraju, and J. Lee, “The Transfer Function Bake-Off,” IEEE Computer Graphics and Applications, vol. 21, no. 3, pp. 16-22, 2001.
[7] C.L. Bajaj, V. Pascucci, and D. Schikore, “The Contour Spectrum,” Proc. IEEE Visualization Conf., pp. 167-174 1997
[8] V. Pekar, R. Wiemker, and D. Hempel, “Fast Detection of Meaningful Isosurfaces for Volume Data Visualization,” Proc. IEEE Visualization Conf., pp. 223-230, 2001.
[9] I. Fujishiro, T. Azuma, and Y. Takeshima, “Automating Transfer Function Design for Comprehensible Volume Rendering Based on 3D Field Topology Analysis,” Proc. IEEE Visualization Conf., pp. 467-470, 1999.
[10] T. He, L. Hong, A. Kaufman, and H. Pfister, “Generation of Transfer Functions with Stochastic Search Techniques,” Proc. IEEE Visualization Conf., pp. 227-234, 1996.
[11] J. Marks, B. Andalman, P.A. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber, “Design Galleries: A General Approach to Setting Parameters for Computer Graphics and Animation,” Proc. SIGGRAPH Conf., pp. 389-400, 1997.
[12] A. König and E. Gröller, “Mastering Transfer Function Specification by Using VolumePro Technology,” Proc. Spring Conf. Computer Graphics, vol. 17, pp. 279-286, 2001.
[13] J. Hladuvka, A. König, and E. Gröller, “Curvature-Based Transfer Functions for Direct Volume Rendering,” Proc. Spring Conf. Computer Graphics, vol. 16, pp. 58-65, 2000.
[14] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Möller, “Curvature-Based Transfer Functions for Direct Volume Rendering: Methods and Applications,” Proc. IEEE Visualization Conf., pp. 513-520, Oct. 2003.
[15] J. Kniss, S. Premoze, M. Ikits, A. Lefohn, C. Hansen, and E. Praun, “Gaussian Transfer Functions for Multifield Volume Visualization,” Proc. IEEE Visualization Conf., pp. 497-504, 2003.
[16] F.Y. Tzeng, E.B. Lum, and K.L. Ma, “A Novel Interface for Higher-Dimensional Classification of Volume Data,” Proc. IEEE Visualization Conf., pp. 505-512, 2003.
[17] F.Y. Tzeng and K.L. Ma, “A Cluster-Space Visual Interface for Arbitrary Dimensional Classification of Volume Data,” Proc. Eurographics/IEEE TCVG Visualization Symp. (VisSym), pp. 17-24, 2004.
[18] E.L. Nickoloff and R. Riley, “A Simplified Approach for Modulation Transfer Function Determinations in Computed Tomography,” Medical Physics, vol. 12, no. 4, pp. 437-442, 1985.
[19] R. Huang and K.L. Ma, “RGV IS: Region Growing Based Visualization Techniques for Volume Visualization,” Proc. Pacific Graphics Conf., pp. 355-363, 2003.
[20] J. Kniss, G. Kindlmann, and C. Hansen, “Multidimensional Transfer Functions for Interactive Volume Rendering,” IEEE Trans. Visualization and Computer Graphics, vol. 8, no. 3, pp. 270-285, 2002.
[21] I.W.O. Serlie, R. Truyen, J. Florie, F. Post, L.J. van Vliet, and F.M. Vos, “Computed Cleansing for Virtual Colonoscopy Using a Three-Material Transition Model,” Medical Image Computing and Computer-Assisted Intervention— MICCAI Proc., part 2, pp. 175-183, 2003, http://www.ph.tu.tedelft.nl/iwoframes.html .
[22] H.W. Shen, C. Hansen, Y. Livnat, and C.R. Johnson, “Isosurfacing in Span Space with Utmost Efficiency (Issue),” Proc. IEEE Visualization Conf., pp. 287-294, 1996.
[23] B.M. ter Haar Romeny, Front-End Vision and Multiscale Image Analysis. Kluwer Academic, 2003.
[24] M.T. Vlaardingerbroek and J.A.D. Boer, Magnetic Resonance Imaging: Theory and Practice. Springer-Verlag, 1999.
[25] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler, “The VolumePro Real-Time Ray-Casting System,” Proc. 26th Ann. Conf. Computer Graphics and Interactive Techniques, pp. 251-260, 1999.

Index Terms:
Volume visualization, direct volume rendering, transfer functions, multidimensional transfer functions, region growing.
Citation:
Petr ?ereda, Anna Vilanova Bartrol?, Iwo W.O. Serlie, Frans A. Gerritsen, "Visualization of Boundaries in Volumetric Data Sets Using LH Histograms," IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 2, pp. 208-218, March-April 2006, doi:10.1109/TVCG.2006.39
Usage of this product signifies your acceptance of the Terms of Use.