
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Blake Nelson, Robert M. Kirby, "RayTracing Polymorphic Multidomain Spectral/hp Elements for Isosurface Rendering," IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 1, pp. 114125, January/February, 2006.  
BibTex  x  
@article{ 10.1109/TVCG.2006.12, author = {Blake Nelson and Robert M. Kirby}, title = {RayTracing Polymorphic Multidomain Spectral/hp Elements for Isosurface Rendering}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {12}, number = {1}, issn = {10772626}, year = {2006}, pages = {114125}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.12}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  RayTracing Polymorphic Multidomain Spectral/hp Elements for Isosurface Rendering IS  1 SN  10772626 SP114 EP125 EPD  114125 A1  Blake Nelson, A1  Robert M. Kirby, PY  2006 KW  Spectral/hp elements KW  highorder finite elements KW  raytracing KW  isosurface rendering KW  fluid flow visualization KW  error budget. VL  12 JA  IEEE Transactions on Visualization and Computer Graphics ER   
Abstract—The purpose of this paper is to present a raytracing isosurface rendering algorithm for spectral/
[1] G.E. Karniadakis and R.M. Kirby, Parallel Scientific Computing in C++ and MPI. Cambridge Univ. Press, 2003.
[2] I. Babuska, B. Szabo, and I. Katz, “The PVersion of the Finite Element Method,” SIAM J. Numerical Analysis, vol. 18, p. 515, 1981.
[3] I. Babuska and M. Dorr, “Error Estimates for the Combined H and PVersion of the Finite Element Method,” J. Numerical Math., vol. 37, p. 257, 1981.
[4] A. Patera, “A Spectral Method for Fluid Dynamics: Laminar Flow in a Channel Expansion,” J. Computational Physics, vol. 54, p. 468, 1984.
[5] G. Karniadakis, E. Bullister, and A. Patera, “A Spectral Element Method for Solution of Two and ThreeDimensional Time Dependent NavierStokes Equations,” Finite Element Methods for Nonlinear Problems, SpringerVerlag, p. 803, 1985.
[6] G. Coppola, S. Sherwin, and J. Peiro, “NonLinear Particle Tracking for HighOrder Elements,” J. Computational Physics, vol. 172, pp. 356380, 2001.
[7] D. Wiley, H. Childs, B. Gregorski, B. Hamann, and K. Joy, “Contouring Curved Quadratic Elements,” Data Visualization Conf., Proc. VisSym 2003, pp. 167176, 2003.
[8] D. Wiley, H. Childs, B. Hamann, and K. Joy, “Ray Casting CurvedQuadratic Elements,” Data Visualization Conf., Proc. VisSym 2004, pp. 201209, 2004.
[9] D. Wiley, “Approximation and Visualization of Scientific Data Using HigherOrder Elements,” PhD dissertation, Univ. of California, Davis, 2003.
[10] M. Brasher and R. Haimes, “Rendering Planar Cuts through Quadratic and Cubic Finite Elements,” Proc. IEEE Visualization Conf., 2004.
[11] G.E. Karniadakis and S.J. Sherwin, Spectral/hp Element Methods for CFD. Oxford Univ. Press, 1999.
[12] Y. Zhou, M. Garland, and R. Haber, “PixelExact Rendering of Spacetime Finite Element Solutions,” Proc. IEEE Visualization Conf., 2004.
[13] W. Lorensen and H.E. Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” Computer Graphics, vol. 21, no. 4, pp. 163169, July 1987.
[14] Y. Livnat and C. Hansen, “View Dependent Isosurface Extraction,” Proc. IEEE Visualization Conf. '98, pp. 175180, Oct. 1998, http://www.sci.utah.edu/publications/yarden98 wise.ps.gz.
[15] “Dynamic View Dependent Isosurface Extraction,” Technical Report UUSCI2003004, Univ. of Utah, SCI Inst., 2003, http://www.sci.utah.edu/publications/yarden03 UUSCI2003004.pdf.
[16] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno, “Optimal Isosurface Extraction from Irregular Volume Data,” Proc. 1996 Symp. Volume Visualization, pp. 3138, 1996.
[17] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R. Scopigno, “Adaptive TetraPuzzles–Efficient OutofCore Construction and Visualization of Gigantic Polygonal Models,” ACM Trans. Graphics, vol. 23, no. 3, pp. 796803, Aug. 2004, http://www.crs4.it/vic/cgibinbibpage.cgi?id='Cignoni:2004:ATE' .
[18] S.E. Yoon, B. Salomon, R. Gayle, and D. Manocha, “QuickVDR: Interactive ViewDependent Rendering of Massive Models,” Proc. IEEE Visualization Conf., pp. 131138, 2004.
[19] S. Parker, M. Parker, Y. Livnat, P. Sloan, C. Hansen, and P. Shirley, “Interactive Ray Tracing for Volume Visualization,” IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 3, pp. 238250, JulySept. 1999.
[20] W. Martin, E. Cohen, R. Fish, and P. Shirley, “Practical Ray Tracing of Trimmed NURBS Surfaces,” J. Graphics Tools, vol. 5, no. 1, pp. 2752, 2000.
[21] C. Rossel, F. Zeilfeldur, G. Nurnberger, and H.P. Seidel, “Reconstruction of Volume Data with Quadratic Super Splines,” IEEE Trans. Visualization and Computer Graphics, vol. 10, no. 4, pp. 397409, July/Aug. 2004.
[22] P.L. Williams, N.L. Max, and C.M. Stein, “A High Accuracy Volume Renderer for Unstructured Data,” IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 1, pp. 3754, Jan.Mar. 1998.
[23] T.J.R. Hughes, The Finite Element Method. Englewood Cliffs, N.J.: PrenticeHall, Inc., 1987.
[24] B. Szabó and I. Babuska, Finite Element Analysis. New York: John Wiley & Sons, 1991.
[25] M. Deville, E. Mund, and P. Fischer, High Order Methods for Incompressible Fluid Flow. Cambridge Univ. Press, 2002.
[26] A.S. Glassner, “Space Subdivision for Fast Ray Tracing,” IEEE Computer Graphics and Applications, vol. 4, pp. 1522, 1984.
[27] A. Fujimoto, T. Tanaka, and K. Iwata, “Arts: Accelerated RayTracing System,” IEEE Computer Graphics and Applications, vol. 6, no. 4, pp. 1626, 1986.
[28] S. Rubin and T. Whitted, “A ThreeDimensional Representation for Fast Rendering of Complex Scenes,” Computer Graphics, vol. 14, no. 3, pp. 110116, 1980.
[29] A.S. Glassner, An Introduction to Ray Tracing. San Francisco: Morgan Kauffmann Publishers, 2000.
[30] C. Canuto and A. Quarteroni, “Approximation Results for Orthogonal Polynomials in Sobolev Spaces,” Math. of Computation, vol. 38, no. 157, pp. 6786, 1982.
[31] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang, Spectral Methods in Fluid Mechanics. SpringerVerlag, 1987.
[32] D. Funaro, Polynomial Approximations of Differential Equations: Lecture Notes in Physics, vol. 8, SpringerVerlag, 1992.
[33] P. Hanrahan, “Ray Tracing Algebraic Surfaces,” Proc. SIGGRAPH Computer Graphics, vol. 17, no. 3, pp. 8390, 1983.
[34] K. Hoffman and R. Kunze, Linear Algebra. Englewood Cliffs, N.J.: PrenticeHall, 1961.
[35] L.N. Trefethen and I.D. Bau, Numerical Linear Algebra. Philadelphia: SIAM, 1997.
[36] J.R. Winkler, “A Companion Matrix Resultant for Bernstein Polynomials,” Linear Algebra and Its Applications, vol. 362, pp. 153175, 2003.
[37] “The Transformation of the Companion Matrix Resultant between the Power and Bernstein Polynomial Bases,” Applied Numerical Math., vol. 48, pp. 113126, 2004.
[38] R.M. Kirby, T.C. Warburton, S.J. Sherwin, A. Beskok, and G.E. Karniadakis, “The ${\cal{N}}\varepsilon\kappa{\cal{T}}\alpha r$ Code: Dynamic Simulations without Remeshing,” Proc. Second Int'l Symp. Computational Technologies for Fluid/Thermal/Chemical Systems with Industrial Applications, ASME PVP Division, vol. 397, 1999.