
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
FanYin Tzeng, Eric B. Lum, KwanLiu Ma, "An Intelligent System Approach to HigherDimensional Classification of Volume Data," IEEE Transactions on Visualization and Computer Graphics, vol. 11, no. 3, pp. 273284, May/June, 2005.  
BibTex  x  
@article{ 10.1109/TVCG.2005.38, author = {FanYin Tzeng and Eric B. Lum and KwanLiu Ma}, title = {An Intelligent System Approach to HigherDimensional Classification of Volume Data}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {11}, number = {3}, issn = {10772626}, year = {2005}, pages = {273284}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2005.38}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  An Intelligent System Approach to HigherDimensional Classification of Volume Data IS  3 SN  10772626 SP273 EP284 EPD  273284 A1  FanYin Tzeng, A1  Eric B. Lum, A1  KwanLiu Ma, PY  2005 KW  User interface design KW  classification KW  transfer functions KW  graphics hardware KW  visualization KW  volume rendering KW  machine learning. VL  11 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] C.L. Bajaj, V. Pascucci, and D.R. Shikore, “The Contour Spectrum,” Proc. IEEE Visualization '97 Conf., pp. 167175, 1997.
[2] V. Blanz, B. Schölkopf, H. Bülthoff, C. Burges, V. Vapnik, and T. Vetter, “Comparison of ViewBased Object Recognition Algorithms Using Realistic 3D Models,” Proc. Int'l Conf. Artificial Neural Networks, pp. 251256, 1996.
[3] B.E. Boser, I. Guyon, and V. Vapnik, “A Training Algorithm for Optimal Margin Classifiers,” Proc. Fifth Ann. Workshop Computational Learning Theory, pp. 144152, 1992.
[4] K.J. Cherkauer and J.W. Shavlik, “Rapid Quality Estimation of Neural Network Input Representations,” Advances in Neural Information Processing Systems, vol. 8, pp. 4551, MIT Press, 1996.
[5] C. Cortes and V. Vapnik, “Support Vector Network,” Machine Learning, vol. 20, no. 3, pp. 273297, 1995.
[6] N. Friedman and D. Geiger, and M. Goldszmidt, “Bayesian Network Classifiers,” Machine Learning, vol. 29, nos. 23, pp. 131163, 1997.
[7] I. Fujishiro, T. Azuma, and Y. Takeshima, “Automating Transfer Function Design for Comprehensible Volume Rendering Based on 3D Field Topology Analysis,” Proc. IEEE Visualization '99 Conf., pp. 467470, 1999.
[8] A. VanGelder and U. Hoffman, “Direct Volume Rendering with Shading via ThreeDimensional Textures,” Proc. ACM Symp. Volume Visualization '96 Conf. Proc., pp. 2330, 1996.
[9] E. Gelenbe, Y. Feng, K. Ranga, and R. Krishnan, “Neural Networks for Volumetric MR Imaging of the Brain,” Proc. Int'l Workshop Neural Networks for Identification, Control, Robotics, and Signal/Image Processing, pp. 194202, 1996.
[10] L.O. Hall, A.M. Bensaid, L.P. Clarke, R.P. Velthuizen, M.S. Silbiger, and J.C. Bezdek, “A Comparison of Neural Network and Fuzzy Clustering Techniques in Segmenting Magnetic Resonance Images of the Brain,” IEEE Trans. Neural Networks, vol. 3, no. 5, pp. 672682, 1992.
[11] T. He, L. Hong, A. Kaufman, and H. Pfister, “Generation of Transfer Functions with Stochastic Search Techniques,” Proc. IEEE Visualization '96 Conf., pp. 227234, 1996.
[12] M.A. Hearst, “Trends and Controversies: Support Vector Machines,” IEEE Intelligent Systems, vol. 13, no. 4, pp. 1828, 1998.
[13] R. Huang and K.L. Ma, “RGVis: Region Growing Based Techniques for Volume Visualization,” Proc. Pacific Graphics '03 Conf., pp. 355363, 2003.
[14] T.J. JankunKelly and K.L. Ma, “A Study of Transfer Function Generation for TimeVarying Volume Data,” Proc. Joint IEEE TCVG and Eurographics Workshop, pp. 5168, 2001.
[15] G. Kindlmann and J.W. Durkin, “SemiAutomatic Generation of Transfer Functions for Direct Volume Rendering,” Proc. '98 IEEE Symp. Volume Visualization, pp. 7986, 1998.
[16] J. Kniss, G. Kindlmann, and C. Hansen, “Interactive Volume Rendering Using MultiDimensional Transfer Functions and Direct Manipulation Widgets,” Proc. IEEE Visualization '01 Conf., pp. 255262, 2001.
[17] A. König and E. Gröller, “Mastering Transfer Function Specification by Using VolumePro Technology,” Proc. Spring Conf. Computer Graphics, vol. 17, pp. 279286, 2001.
[18] M. Levoy, “Display of Surfaces from Volume Data,” IEEE Computer Graphics and Applications, vol. 8, no. 3, pp. 2937, 1988.
[19] J. Marks, B. Andalman, P. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber, “Design Galleries: A General Approach to Setting Parameters for Computer Graphics and Animation,” Proc. SIGGRAPH '97, pp. 389400, 1997.
[20] A. McCallum, D. Freitag, and F. Pereira, “Maximum Entropy Markov Models for Information Extraction and Segmentation,” Proc. 17th Int'l Conf. Machine Learning, pp. 591598, 2000.
[21] E. Osuna, R. Freund, and F. Girosi, “Training Support Vector Machines: An Application to Face Detection,” Proc. '97 Conf. Computer Vision and Pattern Recognition, pp. 130137, 1997.
[22] L.I. Perlovsky, Neural Networks and Intellect: Using ModelBased Concepts. Oxford Univ. Press, 2000.
[23] H. Pfister, B. Lorensen, C. Bajaj, G. Kindlmann, W. Schroeder, L.S. Avila, K. Martin, R. Machiraju, and J. Lee, “The Transfer Function BakeOff,” IEEE Computer Graphics and Applications, vol. 21, no. 3, pp. 1622, May/June 2001.
[24] D. Rumelhart and J. McClelland, Parallel and Distributed Processing: Explorations in the Microstructure of Cognition. The MIT Press, 1986.
[25] I. Takanashi, E.B. Lum, K.L. Ma, and S. Muraki, “ISpace: Interactive Volume Data Classification Techniques Using Independent Component Analysis,” Proc. Pacific Graphics '02 Conf., pp. 366374, 2002.
[26] J. Thorsten, “Text Categorization with Support Vector Machines: Learning with Many Relevant Features,” Proc. 10th European Conf. Machine Learning, pp. 137142, 1998.
[27] F.Y. Tzeng, E.B. Lum, and K.L. Ma, “A Novel Interface for HigherDimensional Classification of Volume Data,” Proc. IEEE Visualization '03 Conf., pp. 505512, 2003.
[28] P. Werbos, “Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences,” PhD thesis, Dept. of Applied Math., Harvard Univ., 1974.