
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
J. Andreas B?rentzen, Henrik Aan?, "Signed Distance Computation Using the Angle Weighted Pseudonormal," IEEE Transactions on Visualization and Computer Graphics, vol. 11, no. 3, pp. 243253, May/June, 2005.  
BibTex  x  
@article{ 10.1109/TVCG.2005.49, author = {J. Andreas B?rentzen and Henrik Aan?}, title = {Signed Distance Computation Using the Angle Weighted Pseudonormal}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {11}, number = {3}, issn = {10772626}, year = {2005}, pages = {243253}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2005.49}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Signed Distance Computation Using the Angle Weighted Pseudonormal IS  3 SN  10772626 SP243 EP253 EPD  243253 A1  J. Andreas B?rentzen, A1  Henrik Aan?, PY  2005 KW  Mesh KW  signed distance field KW  normal KW  pseudonormal KW  polyhedron. VL  11 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] G. Thürmer and C. Wüthrich, “Computing Vertex Normals from Polygonal Facets,” J. Graphics Tools, vol. 3, no. 1, pp. 4346, 1998.
[2] C.H. Séquin, “Procedural Spline Interpolation in Unicubix,” Proc. Third USENIX Computer Graphics Workshop, pp. 6383, 1986.
[3] B. Payne and A. Toga, “Distance Field Manipulation of Surface Models,” IEEE Computer Graphics and Applications, vol. 12, no. 1, pp. 6571, 1992.
[4] A. Guéziec, “Meshsweeper: Dynamic PointtoPolygonal Mesh Distance and Applications,” IEEE Trans. Visualization and Computer Graphics, vol. 7, no. 1, pp. 4760, Jan.Mar. 2001.
[5] J. Sethian, Level Set Methods and Fast Marching Methods Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Univ. Press, 1999.
[6] S.J. Osher and R.P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, first ed. Springer Verlag, Nov. 2002.
[7] Geometric Level Set Methods in Imaging, Vision, and Graphics, S. Osher and N. Paragios, eds. Springer, 2003.
[8] M. Lin and S. Gottschalk, “Collision Detection between Geometric Models: A Survey,” Proc. IMA Conf. Math. of Surfaces, 1998.
[9] M.G. Coutinho, Dynamic Simulations of Multibody Systems. Springer, 2001.
[10] E. Guendelman, R. Bridson, and R.P. Fedkiw, “Nonconvex Rigid Bodies with Stacking,” ACM Trans. Graphics, vol. 22, no. 3, pp. 871878, 2003.
[11] J. Linhart, “A Quick PointinPolyhedron Test,” Computers & Graphics, vol. 14, no. 3, pp. 445448, 1990.
[12] F.R. Feito and J.C. Torres, “Inclusion Test for General Polyhedra,” Computers & Graphics, vol. 21, no. 1, pp. 2330, 1997.
[13] P.C.P. Carvalho and P.R. Cavalcanti, “Point in Polyhedron Testing Using Spherical Polygons,” Graphics Gems V, A.W. Paeth, ed., pp. 4249, AP Professional, 1995.
[14] M. Jones, “The Production of Volume Data from Triangular Meshes Using Voxelisation,” Computer Graphics Forum, vol. 15, no. 5, pp. 311318, 1996.
[15] F. Dachille and A. Kaufman, “Incremental Triangle Voxelization,” Proc. Graphics Interface 2000, pp. 205212, 2000.
[16] S. Mauch, “Efficient Algorithms for Solving Static HamiltonJacobi Equations,” PhD dissertation, Caltech, 2003.
[17] C. Sigg, R. Peikert, and M. Gross, “Signed Distance Transform Using Graphics Hardware,” Proc. IEEE Visualization '03, pp. 8390, 2003.
[18] A. Sud, M.A. Otaduy, and D. Manocha, “Difi: Fast 3D Distance Field Computation Using Graphics Hardware,” Proc. Eurographics, vol. 23, no. 3, 2004.
[19] J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer Graphics: Principles and Practice in C, second ed. AddisonWesley, 1995.
[20] S.F.F. Gibson, R.N. Perry, A.P. Rockwood, and T.R. Jones, “Adaptively Sampled Distance Fields: A General Representation of Shape for Computer Graphics,” Proc. SIGGRAPH 2000, pp. 249254, 2000.
[21] J. Huang, Y. Li, R. Crawfis, S.C. Lu, and S.Y. Liou, “A Complete Distance Field Representation,” Proc. Visualization 2001, pp. 247254, 2001.
[22] D.E. Johnson and E. Cohen, “Bound Coherence for Minimum Distance Computations,” Proc. 1999 IEEE Int'l Conf. Robotics and Automation, pp. 18431848, 1999.
[23] E. Larsen, S. Gottschalk, M.C. Lin, and D. Manocha, “Fast Proximity Queries with Swept Sphere Volumes,” technical report, Dept. of Computer Science, Univ. of North Carolina Chapel Hill, 1999.
[24] J. Wu and L. Kobbelt, “Piecewise Linear Approximation of Signed Distance Fields,” Proc. Vision, Modeling, and Visualization 2003, 2003.
[25] H. Fuchs, Z. Kedem, and B. Naylor, “On Visible Surface Generation by A Priori Tree Structures,” Proc. Seventh Ann. Conf. Computer Graphics and Interactive Techniques, pp. 124133, 1980.
[26] H. Gouraud, “Continuous Shading of Curved Surfaces,” IEEE Trans. Computers, vol. 20, no. 6, pp. 623629, June 1971.
[27] A.S. Glassner, Computing Surface Normals for 3D Models, pp. 562566. Academic Press, 1990.
[28] N. Max, “Weights for Computing Vertex Normals from Facet Normals,” J. Graphics Tools, vol. 4, no. 2, pp. 16, 1999.
[29] H. Aanaes and J.A. Baerentzen, “PseudoNormals for Signed Distance Computation,” Proc. Vision, Modeling, and Visualization 2003, 2003.
[30] P. Sander, X. Gu, S. Gortler, H. Hoppe, and J. Snyder, “Silhouette Clipping,” Proc. ACM SIGGRAPH Conf. Computer Graphics, pp. 327334, 2000.
[31] G. vandenBergen, Collision Detection in Interactive 3D Environments. Morgan Kaufmann, 2004.
[32] S. Gottschalk, “Collision Queries Using Oriented Bounding Boxes,” PhD dissertation, Univ. of North Carolina at Chapel Hill, 2000.
[33] M. Botsch and L. Kobbelt, “A Robust Procedure to Eliminate Degenerate Faces from Triangle Meshes,” Vision, Modeling, Visualization 2001 Proc., 2001.
[34] K. Erleben and H. Dohlmann, personal communications.
[35] J.R. Shewchuk, “Robust Adaptive FloatingPoint Geometric Predicates,” Proc. 12th Ann. Symp. Computational Geometry, pp. 141150, May 1996.