
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Vijay Natarajan, Herbert Edelsbrunner, "Simplification of ThreeDimensional Density Maps," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 5, pp. 587597, September/October, 2004.  
BibTex  x  
@article{ 10.1109/TVCG.2004.32, author = {Vijay Natarajan and Herbert Edelsbrunner}, title = {Simplification of ThreeDimensional Density Maps}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {10}, number = {5}, issn = {10772626}, year = {2004}, pages = {587597}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2004.32}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Simplification of ThreeDimensional Density Maps IS  5 SN  10772626 SP587 EP597 EPD  587597 A1  Vijay Natarajan, A1  Herbert Edelsbrunner, PY  2004 KW  Computational geometry KW  volume visualization KW  hierarchy KW  geometric transformation. VL  10 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] P.T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci, A MultiResolution Data Structure for TwoDimensional Morse Functions Proc. IEEE Conf. Visualization, pp. 139146, 2003.
[2] Y.J. Chiang and X. Lu, Progressive Simplification of Tetrahedral Meshes Preserving All Isosurface Topologies Computer Graphics Forum, vol. 22, pp. 493504, 2003.
[3] P. Cignoni, C. Montani, and R. Scopigno, A Comparison of Mesh Simplification Algorithms Computers and Graphics, vol. 22, pp. 3754, 1998.
[4] P. Cignoni, D. Costanza, C. Montani, C. Rocchini, and R. Scopigno, Simplification of Tetrahedral Volume with Accurate Error Evaluation Proc. IEEE Visualization 2000, pp. 8592, 2000.
[5] T.K. Dey, H. Edelsbrunner, S. Guha, and D.V. Nekhayev, Topology Preserving Edge Contraction Publ. Inst. Math. (Beograd) (N.S.), vol. 66, pp. 2345, 1999.
[6] D.P. Dobkin and M.J. Laszlo, Primitives for Manipulation of Three Dimensional Subdivisions Algorithmica, vol. 4, pp. 332, 1989.
[7] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, MorseSmale Complexes for Piecewise Linear 3Manifolds Proc. 19th Ann. Symp. Computational Geometry, pp. 361370, 2003.
[8] H. Edelsbrunner, J. Harer, and A. Zomorodian, Hierarchical MorseSmale Complexes for Piecewise Linear 2Manifolds Discrete Computational Geometry, vol. 30, pp. 87107, 2003.
[9] H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological Persistence and Simplification Discrete Computational Geometry, vol. 28, pp. 511533, 2002.
[10] M. Garland and P.S. Heckbert, Surface Simplification Using Quadric Error Metrics Proc. SIGGRAPH, pp 209216, 1997.
[11] M. Garland and P.S. Heckbert, Simplifying Surfaces with Color and Texture Using Quadric Error Metrics Proc. IEEE Visualization '98, pp. 263269, 1998.
[12] T. Gerstner and R. Pajarola, Topology Preserving and Controlled Topology Simplifying Multiresolution Isosurface Extraction Proc. IEEE Visualization 2000, pp. 259266, 2000.
[13] T.S. Gieng, B. Hamann, K.I. Joy, G.L. Schussman, and I.J. Trotts, Constructing Hierarchies for Triangle Meshes IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 2, pp. 145161, Apr.June 1998.
[14] P.S. Heckbert and M. Garland, Survey of Polygonal Surface Simplification Algorithms SIGGRAPH '97 Course Notes, 1997.
[15] H. Hoppe, Progressive Meshes Proc. SIGGRAPH, pp. 99108, 1996.
[16] H. Hoppe, New Quadric Metric for Simplifying Meshes with Appearance Attributes Proc. IEEE Visualization '99, pp. 5966, 1999.
[17] P. Lindstrom and G. Turk, Fast and Memory Efficient Polygonal Simplification Proc. IEEE Visualization, pp. 279286, 1998.
[18] E.P. Mücke, Shapes and Implementations in ThreeDimensional Geometry PhD thesis, Dept. of Computer Science, Univ. of Illinois, Urbana, 1993.
[19] J.R. Munkres, Elements of Algebraic Topology. Redwood City, Calif.: AddisonWesley, 1984.
[20] J. Rossignac and P. Borrel, MultiResolution 3D Approximations for Rendering Complex Scenes Modeling in Computer Graphics: Methods and Applications, B. Falcidieno and T. Kunii, eds., pp. 455465, SpringerVerlag, 1993.
[21] W.J. Schroeder, J.A. Zarge, and W.E. Lorensen, Decimation of Triangle Meshes Proc. SIGGRAPH, pp. 6570, 1992.
[22] M.H. Gross and O.G. Staadt, Progressive Tetrahedralizations Proc. IEEE Visualization '98, pp. 397402, 1998.
[23] I.J. Trotts, B. Hamann, K.I. Joy, and D.F. Wiley, Simplification of Tetrahedral Meshes Proc. Visualization '98, D.S. Ebert, H. Hagen, and H.E. Rushmeier, eds., pp. 287295, 1998.
[24] A. Van Gelder, V. Verma, and J. Wilhelms, Volume Decimation of Irregular Tetrahedral Grids Proc. Computer Graphics Int'l, pp. 222230, 1999.