This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Simplification of Three-Dimensional Density Maps
September/October 2004 (vol. 10 no. 5)
pp. 587-597
We consider scientific data sets that describe density functions over three-dimensional geometric domains. Such data sets are often large and coarsened representations are needed for visualization and analysis. Assuming a tetrahedral mesh representation, we construct such representations with a simplification algorithm that combines three goals: the approximation of the function, the preservation of the mesh topology, and the improvement of the mesh quality. The third goal is achieved with a novel extension of the well-known quadric error metric. We perform a number of computational experiments to understand the effect of mesh quality improvement on the density map approximation. In addition, we study the effect of geometric simplification on the topological features of the function by monitoring its critical points.

[1] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci, A Multi-Resolution Data Structure for Two-Dimensional Morse Functions Proc. IEEE Conf. Visualization, pp. 139-146, 2003.
[2] Y.J. Chiang and X. Lu, Progressive Simplification of Tetrahedral Meshes Preserving All Isosurface Topologies Computer Graphics Forum, vol. 22, pp. 493-504, 2003.
[3] P. Cignoni, C. Montani, and R. Scopigno, A Comparison of Mesh Simplification Algorithms Computers and Graphics, vol. 22, pp. 37-54, 1998.
[4] P. Cignoni, D. Costanza, C. Montani, C. Rocchini, and R. Scopigno, Simplification of Tetrahedral Volume with Accurate Error Evaluation Proc. IEEE Visualization 2000, pp. 85-92, 2000.
[5] T.K. Dey, H. Edelsbrunner, S. Guha, and D.V. Nekhayev, Topology Preserving Edge Contraction Publ. Inst. Math. (Beograd) (N.S.), vol. 66, pp. 23-45, 1999.
[6] D.P. Dobkin and M.J. Laszlo, Primitives for Manipulation of Three Dimensional Subdivisions Algorithmica, vol. 4, pp. 3-32, 1989.
[7] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, Morse-Smale Complexes for Piecewise Linear 3-Manifolds Proc. 19th Ann. Symp. Computational Geometry, pp. 361-370, 2003.
[8] H. Edelsbrunner, J. Harer, and A. Zomorodian, Hierarchical Morse-Smale Complexes for Piecewise Linear 2-Manifolds Discrete Computational Geometry, vol. 30, pp. 87-107, 2003.
[9] H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological Persistence and Simplification Discrete Computational Geometry, vol. 28, pp. 511-533, 2002.
[10] M. Garland and P.S. Heckbert, Surface Simplification Using Quadric Error Metrics Proc. SIGGRAPH, pp 209-216, 1997.
[11] M. Garland and P.S. Heckbert, Simplifying Surfaces with Color and Texture Using Quadric Error Metrics Proc. IEEE Visualization '98, pp. 263-269, 1998.
[12] T. Gerstner and R. Pajarola, Topology Preserving and Controlled Topology Simplifying Multiresolution Isosurface Extraction Proc. IEEE Visualization 2000, pp. 259-266, 2000.
[13] T.S. Gieng, B. Hamann, K.I. Joy, G.L. Schussman, and I.J. Trotts, Constructing Hierarchies for Triangle Meshes IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 2, pp. 145-161, Apr.-June 1998.
[14] P.S. Heckbert and M. Garland, Survey of Polygonal Surface Simplification Algorithms SIGGRAPH '97 Course Notes, 1997.
[15] H. Hoppe, Progressive Meshes Proc. SIGGRAPH, pp. 99-108, 1996.
[16] H. Hoppe, New Quadric Metric for Simplifying Meshes with Appearance Attributes Proc. IEEE Visualization '99, pp. 59-66, 1999.
[17] P. Lindstrom and G. Turk, Fast and Memory Efficient Polygonal Simplification Proc. IEEE Visualization, pp. 279-286, 1998.
[18] E.P. Mücke, Shapes and Implementations in Three-Dimensional Geometry PhD thesis, Dept. of Computer Science, Univ. of Illinois, Urbana, 1993.
[19] J.R. Munkres, Elements of Algebraic Topology. Redwood City, Calif.: Addison-Wesley, 1984.
[20] J. Rossignac and P. Borrel, Multi-Resolution 3D Approximations for Rendering Complex Scenes Modeling in Computer Graphics: Methods and Applications, B. Falcidieno and T. Kunii, eds., pp. 455-465, Springer-Verlag, 1993.
[21] W.J. Schroeder, J.A. Zarge, and W.E. Lorensen, Decimation of Triangle Meshes Proc. SIGGRAPH, pp. 65-70, 1992.
[22] M.H. Gross and O.G. Staadt, Progressive Tetrahedralizations Proc. IEEE Visualization '98, pp. 397-402, 1998.
[23] I.J. Trotts, B. Hamann, K.I. Joy, and D.F. Wiley, Simplification of Tetrahedral Meshes Proc. Visualization '98, D.S. Ebert, H. Hagen, and H.E. Rushmeier, eds., pp. 287-295, 1998.
[24] A. Van Gelder, V. Verma, and J. Wilhelms, Volume Decimation of Irregular Tetrahedral Grids Proc. Computer Graphics Int'l, pp. 222-230, 1999.

Index Terms:
Computational geometry, volume visualization, hierarchy, geometric transformation.
Citation:
Vijay Natarajan, Herbert Edelsbrunner, "Simplification of Three-Dimensional Density Maps," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 5, pp. 587-597, Sept.-Oct. 2004, doi:10.1109/TVCG.2004.32
Usage of this product signifies your acceptance of the Terms of Use.