This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Haptics-Based Dynamic Implicit Solid Modeling
September/October 2004 (vol. 10 no. 5)
pp. 574-586
Jing Hua, IEEE
Hong Qin, IEEE
This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback.

[1] A.A.G. Requicha and J.R. Rossignac, Solid Modeling and Beyond IEEE Computer Graphics and Applications, vol. 12, no. 5, pp. 31-44, 1992.
[2] T.A. Galyean and J.F. Hughes, Sculpting: An Interactive Volumetric Modeling Technique Computer Graphics, vol. 25, no. 4, pp. 267-274, 1991.
[3] S.W. Wang and A.E. Kaufman, Volume Sculpting Proc. 1995 Symp. Interactive 3D Graphics, pp. 151-156, 1995.
[4] S. Frisken, R. Perry, A. Rockwood, and T. Jones, Adaptive Sampled Distance Fields: A General Representation of Shape for Computer Graphics SIGGRAPH '00 Proc., pp. 249-254, 2000.
[5] R.N. Perry and S.F. Frisken, Kizamu: A System for Sculpting Digital Characters SIGGRAPH '01 Proc., pp. 47-56, 2001.
[6] J. Bloomenthal, Introduction to Implicit Surfaces, J. Bloomenthal et al., eds. Morgan Kaufmann, 1997.
[7] A. Raviv and G. Elber, Three Dimensional Freeform Sculpting via Zero Sets of Scalar Trivariate Functions Proc. Fifth ACM Symp. Solid Modeling and Applications, pp. 246-257, 1999.
[8] G. Turk and J.F. O'Brien, Modelling with Implicit Surfaces that Interpolate ACM Trans. Graphics, vol. 21, no. 4, pp. 855-873, 2002.
[9] J. Hua and H. Qin, Haptic Sculpting of Volumetric Implicit Functions Proc. Ninth Pacific Conf. Computer Graphics and Applications, pp. 254-264, 2001.
[10] K.T. McDonnell, H. Qin, and R.A. Wlodarczyk, Virtual Clay: A Real-Time Sculpting System with Haptic Toolkits Proc. 2001 Symp. Interactive 3D Graphics, pp. 179-190, 2001.
[11] J. Hua and H. Qin, Haptics-Based Volumetric Modeling Using Dynamic Spline-Based Implicit Functions Proc. IEEE Symp. Volume Visualization and Graphics 2002, pp. 55-64, 2002.
[12] J.F. Blinn, Generalization of Algebraic Surface Drawing ACM Trans. Graphics, vol. 1, no. 3, pp. 235-256, 1982.
[13] J. Bloomenthal and B. Wyvill, Interactive Techniques for Implicit Modeling Proc. 1990 Symp. Interactive 3D Graphics, pp. 109-116, 1990.
[14] B. Wyvill and G. Wyvill, Using Soft Objects in Computer Generated Animation. New York: Springer-Verlag, 1986.
[15] G. Wyvill, C. McPheeters, and B. Wyvill, Data Structure for Soft Objects The Visual Computer, vol. 2, no. 4, pp. 227-234, 1988.
[16] J. Bloomenthal and K. Shoemake, Convolution Surfaces SIGGRAPH '91 Proc., pp. 251-256, 1991.
[17] J. McCormack and A. Sherstyuk, Creating and Rendering Convolution Surfaces Computer Graphics Forum, vol. 17, no. 2, pp. 113-120, 1998.
[18] J.C. Hart, A. Durr, and D. Harsh, Critical Points of Polynomial Meatballs Proc. Implicit Surfaces '98, Eurographics/SIGGRAPH Workshop, pp. 69-76, 1998.
[19] A. Witkin and P. Heckbert, Using Particles to Sample and Control Implicit Surfaces SIGGRAPH '94 Proc., pp. 269-278, 1994.
[20] W. Martin and E. Cohen, Representation and Extraction of Volumetric Attributes Using Trivariate Splines: A Mathematical Framework Proc. Seventh ACM Symp. Solid Modeling and Applications, pp. 234-240, 2001.
[21] B. Schmitt, A. Pasko, and C. Schlick, Constructive Modeling of Frep Solids Using Spline Volumes Proc. Sixth ACM Symp. Solid Modeling and Applications, pp. 321-322, 2001.
[22] E. Ferley, M.P. Cani, and J.-D. Gascuel, Practical Volumetric Sculpting The Visual Computer, vol. 16, no. 7, pp. 469-480, 2000.
[23] K. Museth, D.E. Breen, R.T. Whitaker, and A.H. Barr, Level Set Surface Editing Operators SIGGRAPH '02 Proc., pp. 330-338, 2002.
[24] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, Elastically Deformable Models Computer Graphics, vol. 21, no. 4, pp. 205-214, 1987.
[25] A. Pentland and J. Williams, Good Vibrations: Modal Dynamics for Graphics and Animation Computer Graphics, vol. 23, no. 3, pp. 215-222, 1989.
[26] D. Metaxas and D. Terzopoulos, Dynamic Deformation of Solid Primitives with Constraints Computer Graphics, vol. 26, no. 2, pp. 309-312, 1992.
[27] M.P. Cani and M. Desbrun, Animation of Deformable Models Using Implicit Surfaces IEEE Trans. Visualization and Computer Graphics, vol. 3, no. 1, pp. 39-50, Jan.-Mar. 1997.
[28] M. Kass and G. Miller, Rapid, Stable Fluid Dynamics for Computer Graphics SIGGRAPH '90 Proc., pp. 49-57, 1990.
[29] D. Baraff and A. Witkin, Dynamic Simulation of Non-Penetrating Flexible Bodies SIGGRAPH '92 Proc., pp. 303-308, 1992.
[30] N. Foster and D. Metaxas, Modeling the Motion of Hot, Turbulent Gas SIGGRAPH '97 Proc., pp. 181-188, 1997.
[31] J.F. O'Brien, A.W. Bargteil, J.K. Hodgins, Graphical Modeling and Animation of Ductile Fracture SIGGRAPH '02 Proc., pp. 23-26, 2002.
[32] R. Szeliski and D. Tonnesen, Surface Modeling with Oriented Particle Systems SIGGRAPH '92 Proc., pp. 185-194, 1992.
[33] H. Qin and D. Terzopoulos, “D-NURBS: A Physics-Based Framework for Geometric Design,” IEEE Trans. Visualization and Computer Graphics, vol. 2, no. 1, pp. 85-96, Mar. 1996.
[34] C. Mandal, H. Qin, and B.C. Vemuri, A Novel Fem-Based Dynamic Framework for Subdivision Surfaces Proc. Fifth ACM Symp. Solid Modeling and Applications, pp. 191-202, 1999.
[35] J.K. Salisbury, D. Brocki, T. Massiet, N. Swarupf, and C. Zillest, Haptic Rendering: Programming Touch with Virtual Objects Proc. 1995 Symp. Interactive 3D Graphics, pp. 123-130, 1995.
[36] J.K. Salisbury and C. Tarr, Phantom-Based Haptic Interaction with Virtual Objects IEEE Computer Graphics and Applications, vol. 17, no. 5, pp. 6-10, 1997.
[37] C.B. Zilles and J.K. Salisbury, A Constraint-Based God-Object Method for Haptic Display Proc. Int'l Conf. Intelligent Robots and Systems, pp. 3146-3152, 1995.
[38] H.B. Morgenbesser and M.A. Srinivasan, Force Shading for Haptic Perception Proc. 1996 ASME Int'l Mechanical Eng. Congress and Exposition, Dynamic Systems and Control Division, pp. 407-412, 1996.
[39] J.K. Salisbury and C. Tarr, Haptic Rendering of Surfaces Defined by Implicit Functions Proc. ASME Sixth Ann. Sympo. Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 15-21, 1997.
[40] L. Kim, A. Kyrikou, G.S. Sukhatme, and M. Desbrun, An Implicit-Based Haptic Rendering Technique Proc. IEEE/RSJ Int'l Conf. Intelligent Robots, 2002.
[41] R.S. Avila and L.M. Sobierajski, A Haptic Interaction Method for Volume Visualization Proc. Seventh IEEE Visualization '96, pp. 197-204, 1996.
[42] T.V. Thompson, D.E. Johnson, and E. Cohen, Direct Haptic Rendering of Sculptured Models Proc. 1997 Symp. Interactive 3D Graphics, pp. 167-176, 1997.
[43] F. Dachille, H. Qin, and A.E. Kaufman, A Novel Haptics-Based Interface and Sculpting System for Physics-Based Geometric Design Computer-Aided Design, vol. 33, no. 5, pp. 403-420, 2001.
[44] R. Balakrishnan, G. Fitzmaurice, G. Kurtenbach, and K. Singh, Exploring Interactive Curve and Surface Manipulation Using a Bend and Twist Sensitive Input Strip Proc. 1999 Symp. Interactive 3D Graphics, pp. 111-118, 1999.
[45] S. Muraki, Volumetric Shape Description of Range Data Using Blobby Model Computer Graphics, vol. 25, no. 4, pp. 227-235, 1991.
[46] G. Turk and J.F. O'Brien, Shape Transformation Using Variational Implicit Surface SIGGRAPH '99 Proc., pp. 335-342, 1999.
[47] J.C. Carr, R.K. Beatson, and J.B. Cherrie, Reconstruction and Representation of 3D Objects with Radial Basis Functions SIGGRAPH '01 Proc., pp. 67-76, 2001.
[48] H. Zhao, S. Osher, and R. Fedkiw, Fast Surface Reconstruction and Deformation Using the Level Set Method Proc. IEEE Workshop Variational and Level Set Methods in Computer Vision, pp. 194-201, 2001.
[49] W.E. Lorensen and H.E. Cline, Marching Cubes: A High Resolution 3D Surface Construction Algorithm Computer Graphics, vol. 21, no. 4, pp. 163-169, 1987.
[50] J. Wilhelms and A.V. Gelder, Octrees for Faster Isosurface Generation ACM Trans. Graphics, vol. 11, no. 3, pp. 201-227, 1992.

Index Terms:
Geometric modeling, physics-based modeling and sculpting, implicit functions, interaction techniques, haptic interface.
Citation:
Jing Hua, Hong Qin, "Haptics-Based Dynamic Implicit Solid Modeling," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 5, pp. 574-586, Sept.-Oct. 2004, doi:10.1109/TVCG.2004.28
Usage of this product signifies your acceptance of the Terms of Use.