This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
On a Construction of a Hierarchy of Best Linear Spline Approximations Using a Finite Element Approach
September/October 2004 (vol. 10 no. 5)
pp. 548-563
We present a method for the hierarchical approximation of functions in one, two, or three variables based on the finite element method (Ritz approximation). Starting with a set of data sites with associated function, we first determine a smooth (scattered-data) interpolant. Next, we construct an initial triangulation by triangulating the region bounded by the minimal subset of data sites defining the convex hull of all sites. We insert only original data sites, thus reducing storage requirements. For each triangulation, we solve a minimization problem: computing the best linear spline approximation of the interpolant of all data, based on a functional involving function values and first derivatives. The error of a best linear spline approximation is computed in a Sobolev-like norm, leading to element-specific error values. We use these interval/triangle/tetrahedron-specific values to identify the element to subdivide next. The subdivision of an element with largest error value requires the recomputation of all spline coefficients due to the global nature of the problem. We improve efficiency by 1) subdividing multiple elements simultaneously and 2) by using a sparse-matrix representation and system solver.

[1] P.K. Agarwal and P.K. Desikan, An Efficient Algorithm for Terrain Simplification Proc. Eighth ACM/SIGACT-SIAM Symp. Discrete Algorithms (SODA '97), pp. 139-147, 1997.
[2] W. Boehm and H. Prautzsch, Numerical Methods. Wellesley, Mass.: A.K. Peters, Ltd., 1993.
[3] G.P. Bonneau, S. Hahmann, and G.M. Nielson, BLAC-Wavelets: A Multiresolution Analysis with Non-Nested Spaces Proc. Visualization '96, pp. 43-48, R. Yagel and G.M. Nielson, eds., 1996.
[4] P. Cignoni, L. De Floriani, C. Montani, E. Puppo, and R. Scopigno, Multiresolution Modeling and Visualization of Volume Data Based on Simplicial Complexes Proc. 1994 Symp. Volume Visualization, A.E. Kaufman and W. Krüger, eds., pp. 19-26, 1994.
[5] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno, Multiresolution Modeling and Visualization of Volume Data IEEE Trans. Visualization and Computer Graphics, vol. 3, no. 4, pp. 352-369, Oct.-Dec. 1997.
[6] I.S. Duff, A.M. Erisman, and J.K. Reid, Direct Methods for Sparse Matrices, pp. 239-251. Oxford, U.K.: Clarendon Press, 1986.
[7] N. Dyn, M.S. Floater, and A. Iske, Adaptive Thinning for Bivariate Scattered Data Report TUM M0006, Technische Universität München, Fakultät für Mathematik, München, Germany, 2000.
[8] N. Dyn, D. Levin, and S. Rippa, Algorithms for the Construction of Data Dependent Triangulations Algorithms for Approximation II, J.C. Mason and M.G. Cox, eds., pp. 185-192, New York: Chapman and Hall, 1990.
[9] M. Eck, A.D. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle, Multiresolution Analysis of Arbitrary Meshes Proc. SIGGRAPH '95, R. Cook, ed., pp. 173-182, 1995.
[10] M.S. Floater and A. Iske, Multistep Scattered Data Interpolation Using Compactly Supported Radial Basis Functions J. Computational and Applied Math., vol. 73, no. 5, pp. 65-78, 1996.
[11] M.S. Floater and A. Iske, Thinning and Approximation of Large Sets of Scattered Data Advanced Topics in Multivariate Approximation, F. Fontanella, K. Jetter, and P.-J. Laurent, eds., pp. 87-96, Singaport: World Scientific, 1996.
[12] M.S. Floater and M. Reimers, Meshless Parameterization and Surface Reconstruction Computer Aided Geometric Design, vol. 18, pp. 77-92, 2001.
[13] R. Franke, Scattered Data Interpolation: Tests of Some Methods Math. Computation, vol. 38, pp. 181-200, 1982.
[14] T.S. Gieng, B. Hamann, K.I. Joy, G.L. Schussman, and I.J. Trotts, Smooth Hierarchical Surface Triangulations Proc. Visualization '97, R. Yagel and H. Hagen, eds., pp. 379-386, 1997.
[15] T.S. Gieng, B. Hamann, K.I. Joy, G.L. Schussman, and I.J. Trotts, Constructing Hierarchies for Triangle Meshes IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 2, pp. 145-161, Apr.-June 1998.
[16] M.H. Gross, R. Gatti, and O. Staadt, "Fast Multiresolution Surface Meshing," Proc. IEEE Visualization '95, G.M. Nielson and D. Silver, eds., pp. 135-142, 1995.
[17] R. Grosso, C. Luerig, and T. Ertl, The Multilevel Finite Element Method for Adaptive Mesh Optimization and Visualization of Volume Data Proc. IEEE Visualization '97, R. Yagel and H. Hagen, eds., pp. 387-394, 1997.
[18] Focus on Scientific Visualization, H. Hagen, H. Müller, and G.M. Nielson, eds. New York: Springer-Verlag, 1993.
[19] B. Hamann, A Data Reduction Scheme for Triangulated Surfaces Computer Aided Geometric Design, vol. 11, no. 2, pp. 197-214, 1994.
[20] B. Hamann and J.L. Chen, Data Point Selection for Piecewise Linear Curve Approximation Computer Aided Geometric Design, vol. 11, no. 3, pp. 289-301, 1994.
[21] B. Hamann and B.W. Jordan, Triangulations from Repeated Bisection Math. Methods for Curves and Surfaces II, M. Dæhlen, T. Lyche, and L.L. Schumaker, eds., pp. 229-236, Nashville, Tenn.: Vanderbilt Univ. Press, 1998.
[22] B. Hamann, B.W. Jordan, and D.F. Wiley, “On a Construction of a Hierarchy of Best Linear Spline Approximations Using Repeated Bisection,” IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 1, pp. 30-46, Jan.-Mar. 1999.
[23] H. Hoppe, Progressive Meshes Proc. SIGGRAPH 1996, H. Rushmeier, ed., pp. 99-108, 1996.
[24] H. Hoppe, View-Dependent Refinement of Progressive Meshes Proc. SIGGRAPH '97, T. Whitted, ed., pp. 189-198, 1997.
[25] Volume Visualization, A.E. Kaufman, ed. Los Alamitos, Calif.: IEEE CS Press, 1991.
[26] E. Nadler, Piecewise Linear Best$L_2$Approximation on Triangulations Approximation Theory V, J.D. Ward, ed., pp. 499-502, San Diego, Calif.: Academic Press, 1986.
[27] G.M. Nielson, “Scattered Data Modeling,” IEEE CG&A, Vol. 13, No. 1, Jan. 1993, pp. 60-70.
[28] G.M. Nielson, I.-H. Jung, and J. Sung, Haar Wavelets over Triangular Domains with Applications to Multiresolution Models for Flow over a Sphere Proc. Visualization '97, R. Yagel and H. Hagen, eds., pp. 143-149, 1997.
[29] Scientific Visualization: Overviews, Methodologies, and Techniques, G.M. Nielson, H. Müller, and H. Hagen, eds. Los Alamitos, Calif.: IEEE CS Press, 1997.
[30] Visualization in Scientific Computing, G.M. Nielson and B.D. Shriver, eds. Los Alamitos, Calif.: IEEE CS Press, 1990.
[31] S. Rippa, Long and Thin Triangles Can Be Good for Linear Interpolation SIAM J. Numerical Analysis, vol. 29, no. 1, pp. 257-270, 1992.
[32] Scientific Visualization Advances and Challenges, L.J. Rosenblum, R.A. Earnshaw, J.L. Ençãrnao, H. Hagen, A.E. Kaufman, S. Klimenko, G.M. Nielson, F. Post, and D. Thalmann, D., eds. Los Alamitos, Calif.: IEEE CS Press, 1994.
[33] O.G. Staadt, M.H. Gross, and R. Weber, Multiresolution Compression and Reconstruction Proc. Visualization '97, R. Yagel and H. Hagen, eds., pp. 337-346, 1997.
[34] I.J. Trotts, B. Hamann, and K.I. Joy, Simplification of Tetrahedral Meshes with Error Bounds IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 3, pp. 224-237, 1999.
[35] I.J. Trotts, B. Hamann, K.I. Joy, and D.F. Wiley, Simplification of Tetrahedral Meshes Proc. Visualization '98, D.S. Ebert, H. Hagen, and H.E. Rushmeier, eds., pp. 287-295, 1998.
[36] J.C. Xia and A. Varshney, Dynamic View-Dependent Simplification for Polygonal Meshes Proc. Visualization '96, R. Yagel and G.M. Nielson, eds., pp. 327-334, 1996.
[37] O.C. Zienkiewicz and R.L. Taylor, The Finite-Element Method, vols. 1-3, fifth ed. Oxford, U.K.: Butterworth-Heinemann, 2000.

Index Terms:
Approximation, finite element method, grid generation, multiresolution method optimization, Ritz approximation, scattered data, spline, triangulation, unstructured grid, visualization.
Citation:
David F. Wiley, Martin Bertram, Bernd Hamann, "On a Construction of a Hierarchy of Best Linear Spline Approximations Using a Finite Element Approach," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 5, pp. 548-563, Sept.-Oct. 2004, doi:10.1109/TVCG.2004.29
Usage of this product signifies your acceptance of the Terms of Use.