This Article 
 Bibliographic References 
 Add to: 
Crest Lines for Surface Segmentation and Flattening
September/October 2004 (vol. 10 no. 5)
pp. 536-544
We present a method for extracting feature curves called crest lines from a triangulated surface. Then, we calculate the geodesic Voronoi diagram of crest lines to segment the surface into several regions. Afterward, barycentric surface flattening using theory from graph embeddings is implemented and, using the Geodesic Voronoi diagram, we develop a faster surface flattening algorithm.

[1] O. Monga, N. Armande, and P. Montesinos, Thin Nets and Crest Lines: Application to Satellite Data and Medical Images Computer Vision and Image Understanding, vol. 67, no. 3, pp. 285-295, 1997.
[2] N. Khaneja, M. Miller, and U. Grenander, “Dynamic Programming Generation of Curves on Brain Surfaces,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 11, pp. 294-302, 1998.
[3] J.P. Thirion and A. Gourdon, The 3D Marching Lines Algorithm Graphical Models and Image Processing, vol. 58, no. 6, pp. 503-509, 1996.
[4] A. Guéziec and N. Ayache, Smoothing and Matching of 3D Space Curves Proc. 1992, European Conf. Computer Vision, pp. 620-629, 1992.
[5] G. Stylianou, A Feature Based Method for Rigid Registration of Anatomical Surfaces Geometric Modelling for Scientific Visualization, G. Brunett, B. Hamann, and H. Mueller, eds., Springer-Verlag, 2004.
[6] P.R. Andresen, M. Nielsen, and S. Kreiborg, 4D Shape-Preserving Modelling of Bone Growth Proc. Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI), 1998.
[7] J. Declerck, G. Subsol, J.P. Thirion, and N. Ayache, Automatic Retrieval of Anatomical Structures in 3D Medical Images Proc. Computer Vision, Virtual Reality and Robotics in Medicine (CVRMed '95), N. Ayache, ed., pp. 153-162, 1995.
[8] R. Lengagne, F. Pascal, and O. Monga, Using Crest Lines to Guide Surface Reconstruction from Stereo Proc. 13th Int'l Conf. Pattern Recognition, 1996.
[9] A. Guéziec, "Large Deformable Splines: Crest Lines and Matching," Proc. Fourth Int'l Conf. Computer Vision,Berlin, May 1993.
[10] G. Lohmann, Extracting Line Representations of Sulcal and Gyral Patterns in MR Images of the Human Brain IEEE Trans. Medical Imaging, vol. 17, no. 6, pp. 1040-1048, 1998.
[11] X. Tao, J.L. Prince, and C. Davatzikos, Using a Statistical Shape Model to Extract Sulcal Curves on the Outer Cortex of the Human Brain IEEE Trans. Medical Imaging, vol. 21, no. 5, pp. 513-524, 2002.
[12] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle, “Conformal Surface Parameterization for Texture Mapping,” IEEE Trans. Visualization and Computer Graphics, vol. 6, no. 2, 2000.
[13] S. Angenent, S. Haker, A. Tannenbaum, and R. Kikinis, “Laplace-Beltrami Operator and Brain Flattening,” IEEE Trans. Medical Imaging, vol. 18, pp. 700-711, 1999.
[14] B. Lévy, S. Petitjean, N. Ray, and J. Maillot, Least Squares Conformal Maps for Automatic Texture Atlas Generation ACM Trans. Graphics, vol. 21, no. 3, 2002.
[15] M. Desbrun, M. Meyer, and P. Alliez, Intrinsic Parameterization of Surface Meshes EuroGraphics, vol. 21, no. 2, 2002.
[16] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle, Multiresolution Analysis of Arbitrary Meshes ACM SIGGRAPH Conf. Proc., pp. 173-182, 1995.
[17] W.T. Tutte, Convex Representations of Graphs Proc. London Math. Soc., vol. 10, pp. 304-320, 1960.
[18] W.T. Tutte, How to Draw a Graph Proc. London Math. Soc., vol. 13, pp. 743-768, 1963.
[19] M.S. Floater, Parametrization and Smooth Approximation of Surface Triangulations Computer Aided Geometric Design, vol. 14, pp. 231-250, 1997.
[20] M.S. Floater, Mean Value Coordinates Computer Aided Geometric Design, vol. 20, pp. 19-27, 2003.
[21] G. Stylianou and G. Farin, Shape Feature Extraction Hierarchical Approximation and Geometrical Methods for Scientific Visualization, G. Farin, B. Hammann, and H. Hagen, eds., Berlin, Heidelberg: Springer, 2002.
[22] G. Farin, Curves and Surfaces for Computer Aided Geometric Design, fifth ed. Morgan-Kaufmann, 2001.
[23] B. Hamann, Curvature Approximation for Triangulated Surfaces Geometric Modelling, G. Farin et al., eds., pp. 139-153, Berlin: Springer, 1993.
[24] C. Rossl, L. Kobbelt, and H.-P. Seidel, Extraction of Feature Lines on Triangulated Surfaces Using Morphological Operators Proc. AAAI 2000 Spring Symp. Series Smart Graphics, 2000.
[25] R. Kunze, F.-E. Wolter, and T. Rausch, Geodesic Voronoi Diagrams on Parametric Surfaces Computer Graphics Int'l Proc., pp. 230-237, 1997.
[26] R. Kimmel and J. Sethian, Computing Geodesic Paths on Manifolds Nat'l Academy of Sciences, USA, vol. 95, no. 15, pp. 8431-8435, 1998.
[27] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, Mesh Optimization Proc. ACM SIGGRAPH, pp. 19-26, 1993.

Index Terms:
Crest lines, curvature, segmentation, surface flattening.
Georgios Stylianou, Gerald Farin, "Crest Lines for Surface Segmentation and Flattening," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 5, pp. 536-544, Sept.-Oct. 2004, doi:10.1109/TVCG.2004.24
Usage of this product signifies your acceptance of the Terms of Use.